研究生: |
吳尚恩 Wu, Shang-En |
---|---|
論文名稱: |
以檸檬酸法製備鋰離子電池陰極材料-LiMn2O4之合成機構 Mechanism for the synthesis of LiMn2O4 cathode material using citrate route |
指導教授: |
方滄澤
Fang, Tsang-Tse |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 充放電 、電容量 、衰退率 、鋰錳氧化物 、尖晶石 、凝膠 、酸鹼值 |
外文關鍵詞: | citric, cycling, lithium ion battery, pH, discharge, capacity, gel, lithium manganese oxide, spinel |
相關次數: | 點閱:116 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用檸檬酸凝膠法製備LiMn2O4 鋰離子電池陰極材料。鋰錳檸檬酸凝膠在經過500℃熱分解12小時以後,可以合成單相LiMn2O4,經充放電測試,電容量可達120 mAh/g以上。
含鋰錳離子的檸檬酸-乙二醇起始溶液,經調整pH值後,可使凝膠熱分解後的LiMn2O4相更容易生成,也改善了LiMn2O4粉末的充放電性質。LiMn2O4粉末的個別粒徑也因為起始溶液pH值的改變而細化。
藉由拉曼光譜及C13核磁共振光譜分析起始溶液,發現檸檬酸分子只有跟錳離子發生鍵結,與鋰離子並沒有發生任何作用。而調整起始溶液pH值也使得錳離子的周圍配位情形改變。
從起始溶液到凝膠,乃至熱分解前導物,LiMn2O4的合成機構仍需進一步探討。
Modified citrate routes were used to prepare nanocrystalline spinel lithium manganese oxides LiMn2O4 as the cathode materials for lithium ion batteries. Adjusting the pH of precursor solutions containing citric acid (CA), ethylene glycol (EG), and lithium and manganese ions makes the formation of LiMn2O4 much easier, which in turn improves the electrochemical performance of the resultant LiMn2O4 powders. To understand the effect of pH on the interactions between cations and CA, C13 NMR and Raman spectra were used to characterize the precursor solution. The spectra have shown that CA coordinated only to manganese ions in the Li/Mn/CA/EG solution, and lithium ions didn’t cause any effect on CA. With the adjustment of pH, the interactions between CA and manganese ions changed monotonically.
1. 許雪萍、陳金銘、施德旭、林月微、姚慶意, 工業材料126期, p. 106 (1997).
2. 林月微, 工業材料157期, p. 158 (2000).
3. 姚慶意, 工業材料131期, p. 161 (1997).
4. S. W. Jang et al., J. Power Sources, 88(2), p. 274 (2000).
5. A. Manthiram, J.O.M., March, 49(3), p. 43 (1997).
6. 尹邦躍, 奈米時代, p. 69, 五南圖書.
7. 費定國、袁正宇, 工業材料158期, p. 158 (2000).
8. 彰銀資料49期3卷, p. 88 (2000).
9. 張惇杰, 工業材料160期, p. 153 (2000).
10. 蔡哲正、陳金銘, 工業材料158期, p. 127 (2000).
11. L. A. de Picciotto et al., Mat. Res. Bull., 19, p. 1497 (1984).
12. A. Manthiram, and J.B. Goodenough, Can. J. Phys., 65, p. 1309 (1987).
13. T. Shirane et al., Solid State Ionics, 79, p. 227 (1995).
14. A. R. Armstrong and P.G. Bruce, Nature, 381, p. 499 (1996).
15. H. Wang et al., Electrochem. Solid-State. Lett., 2, (10), p. 490 (1999).
16. G. Dutta, A. Manthiram, and J.B. Goodenough, J. Solid State Chem., 96, p. 123 (1992).
17. A. Hirano et al., Solid State Ionics, 78, p. 123 (1995).
18. 楊模樺, 工業材料157期, p. 144 (2000).
19. T. Hahn, International tables for crystallography, Vol. A, Kluwer Academic Publishers, Boston, p. 687 (1992).
20. M. Wakihara, Materials Science and Engineering, R33, p. 109 (2001).
21. 吳銘訓, “YSr2Cu3(1-a)Mo3aOy及LaBa2Cu3Oy高溫超導體的合成及熱處理對其晶體結構及超導性的影響”, 國立成功大學材料科學及工程學系博士論文 (1998).
22. M. Arima et al., J. Am. Ceram. Soc., 79(11), p. 2847 (1996).
23. M. Kakihana et al., Chem. Mater., 9(2), p. 451 (1997).
24. M. Kakihana et al., J. Am. Ceram. Soc., 79(6), p. 1673 (1996).
25. M. N. Rahaman, in “Ceramic Processing and Sintering”, Marcel Dekker,New York, p. 57.
26. M. Kakihana, J. Sol-Gel Sci. Tech., 6, p. 7 (1996).
27. W. Liu and G.C. Farrington, J. Electrochem. Soc., 143, (3), p. 879 (1996).
28. 莊淑媛, “拉曼光譜研究Fe:LiNbO3晶體聲子模與光折效應”, 國立師範大學物理研究所碩士論文 (2000).
29. K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds”, 4th edition, p. 477, John Wiley & Sons, U. S. A. (1986).
30. 蔡政達, “利用FT-IR和13C-NMR光譜探討檸檬酸製程合成碳酸鋇陶瓷粉末之研究”, 國立成功大學材料科學及工程學系博士論文 (1999).
31. R. K. Harris, “Nuclear Magnetic Resonance Spectroscopy”, Longman Scientific & Technical, U. K. (1986).
32. M. Kakihana and M. Arima, Chem. Mater., 11(2), p. 438 (1999).
33. R. J. Nick et al., J. Am. Chem. Soc. , 113, p. 1838 (1991).
34. R. S. Czernuszewicz, J. Am. Chem. Soc., 110, p. 4158 (1988).
35. T. T. Fang and J. D. Tsay, J. Am. Ceram., Soc., 84(11), p. 2475 (2001).