簡易檢索 / 詳目顯示

研究生: 周靜宜
Chou, Ching-Yi
論文名稱: Closure of constraint algebra 及其在球對稱量子重力的應用
Closure of constraint algebra and its application to spherically symmetric quantum gravity
指導教授: 許祖斌
Soo, Chopin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 50
中文關鍵詞: 約束代數
外文關鍵詞: constraint algebra
相關次數: 點閱:72下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究四維廣義相對論中的量子約束代數封閉性。在以Ashtekar變數表示的full theory裡,我們驗証特定ordering約束代數封閉性。這對應到Wheeler-DeWitt方程式中某一特定的ordering,不論是以Ashtekar變數或傳統上常用的densitized triad及外賦曲率變數來表示。在此篇論文中將詳盡地探討球對稱量子重力中的變數及量子約束的簡化,並確立其所對應量子約束的約束代數封閉性。

    The closure of the quantum constraint algebra of four-dimensional General Relativity is investigated. Closure of the algebra for the full theory with Ashtekar variables for a prescribed ordering is demonstrated. This leads to a specific choice of ordering of operators in the Wheeler-DeWitt equation both with Ashtekar variables and with more conventional densitized triad and extrinsic curvature variables. Reduction of the variables and quantum constraints to spherically symmetric quantum gravity is studied in detail, and closure of the corresponding quantum constraint algebra is also established.

    Contents 1 Introduction and overview 2 1.1 Arnowitt-Deser-Misner(ADM) formulation and geometrodynamics . . . . . . 3 1.1.1 Vierbein, dreibein and triad . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Constraints of General Relativity with Ashtekar variables . . . . . . . . . . . 5 2 Spherically symmetric Quantum Gravity 6 2.0.1 Coordinate transformations and Lie derivatives . . . . . . . . . . . . . 6 2.0.2 Spherically symmetric initial data . . . . . . . . . . . . . . . . . . . . 7 2.1 Constraints for spherically symmetric initial data . . . . . . . . . . . . . . . . 9 2.1.1 Spherical symmetry and reduction of the constraints . . . . . . . . . . 9 2.1.2 Discussion of the role of the reduced constraints . . . . . . . . . . . . 12 2.1.3 The solution of the Gauss Law constraint . . . . . . . . . . . . . . . . 14 2.1.4 A note on the density weights of the variables: . . . . . . . . . . . . . 17 2.2 Closure of the constraint algebra in spherically symmetric quantum gravity . 18 3 Constraint algebra and closure of Constraint algebra of the full theory 23 3.0.1 The constraint algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Explicit computations of the commutators of constraints . . . . . . . . . . . . 24 4 Conclusions and further remarks 43 A Some explicit calculations 45

    Bibliography
    [1] A. Ashtekar, New Variables for Classical and Quantum Gravity, Phys. Rev. Lett. 57, 18, 2244-2247 (1986).
    [2] A. Ashtekar, New Hamiltonian formulation of general relativity, Phys. Rev. D36, 6, 1587-1602 (1987).
    [3] A. Ashtekar, Lectures on Non-Perturbative Canonical Gravity (Advanced Series in Astro-physics and Cosmology, Vol 6), World Scienti c Pub Co Inc, Singapore, 334 (1991).
    [4] A. Ashtekar, Quantum mechanics of geometry (1999). arXiv:gr-qc/9901023.
    [5] Barbero G., J. Fernando, Real Ashtekar variables for Lorentzian signature space-times, Phys. Rev. D51, 10, 5507-5510 (1995).
    [6] C.H. Chou, C. Soo and H.L. Yu, Black holes and Rindler superspace: Classical singularity and quantum unitarity, Phys. Rev. D76, 084004 (2007). arXiv:gr-qc/0703072.
    [7] Bryce S. DeWitt, Quantum Theory of Gravity. 1. The Canonical Theory, Phys. Rev. 160, 1113-1148 (1967).
    [8] Cecile M. DeWitt and John A. Wheeler, Battelle rencontres 1967 lectures in mathematics and physics chapter IX : Superspace and the nature of quantum geometrodynamics, W A.Benjamin, Inc., New York, 243-307 (1968).
    [9] P.A.M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monograph Series. Dover Publications, New York (1964).
    [10] Tohru Eguchi, Peter B. Gilkey and Andrew J. Hanson, Gravitation, Gauge Theories and Differential Geometry, Phys. Rept. 66, 6, 213 (1980).
    [11] P.Forgacs and N.S.Manton, Space-time symmetries in gauge theories, Communications in Mathematical Physics, 72, 1, 15-35 (1980).
    [12] Ehlers J and Friedrichs H (eds), Lecture notes in physics, 434,Canonical gravity: From classical to quantum proceedings, 117th WE Heraeus Seminar, Springer, Berlin, Germany (1993).
    [13] T. Jacobson and L. Smolin, The Left-Handed Spin Connection as a Variable for Canonical Gravity, Phys. Lett. B196, 39-42 (1987).
    [14] T. Jacobson and L. Smolin, Covariant Action for Ashtekar's Form of Canonical Gravity, Class. Quant. Grav. 5, 583 (1988).
    [15] Joseph. Samuel, A Lagrangian basis for Ashtekar's formulation of canonical gravity, Pramana, 28, L429-L432(1987).
    [16] C. Soo, Black holes and Rindler superspace, seminar: Tainan Workshop on Cosmology and Gravitation, NCTS-NCKU,(Jan.2007).
    [17] C. Soo, Classical and Quantum Gravity with Ashtekar Variables: Case Study of the Chern-Simons State, seminar: Tsinghua University, Beijing, (Nov.2007).
    [18] C. Soo, Introduction to Classical and Quantum Canonical Gravity, seminar: Tsinghua University, Beijing,(Nov.2007).
    [19] C. Soo, Modern Canonical Quantum Gravity I and II: Wheeler-DeWitt Equation and further simpli cation of the constraints of General Relativity in 4 dimensions, seminar: Nat. U. of Singapore, (Jan.2006).
    [20] E. Witten, Some Exact Multipseudoparticle Solutions of Classical Yang-Mills Theory, Phys. Rev. Lett. 38, 3, 121-124 (1977).

    下載圖示 校內:2009-06-23公開
    校外:2009-06-23公開
    QR CODE