簡易檢索 / 詳目顯示

研究生: 林建錡
Lin, Jian-Ci
論文名稱: 高效能可印刷式電解質的製備及其在染料敏化太陽能電池之應用
Preparation of High-performance Printable Electrolytes for Dye-sensitized Solar Cell Applications
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 102
中文關鍵詞: 染料敏化太陽能電池可印刷式電解質印刷式製程
外文關鍵詞: Dye-sensitized solar cells, Printable electrolytes, Printing process
相關次數: 點閱:73下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發一適用於染料敏化太陽能電池之高效能可印刷式電解質,探討此電解質於太陽光下之最佳條件,並應用於室內光環境與大尺寸次模組元件。實驗中搭配N719染料,以低揮發性的3-甲氧基丙腈(MPN) 製備含I-/I3-氧化還原對之電解質溶液,並利用聚氧化乙烯(PEO)及聚甲基丙烯酸甲酯(PMMA)共混物作為增稠劑,提高電解質黏度使其具有可印刷之特性。實驗結果顯示,要使電解質具備可印刷特性,PEO為必要成分,PMMA的添加則可提高電解質的導電性以及元件的光電轉化效率,但過多的PMMA會導致電解質黏度下降,使其在印刷製程中發生溢流行為,不利於製備元件。而藉由增稠劑含量的調控,研究發現在PEO/PMMA的比例為7:3時添加9wt%高分子共混物,電解質具有印刷式製程所需之最低黏度16.94 Pa⸱s,且以此可印刷式電解質所製備之元件在標準光源(100mW/cm2)下有最佳光電轉換效率8.49%。研究結果亦發現,使用印刷式製程來導入電解質,可使高黏度電解質在中孔洞結構的二氧化鈦光電極中有較佳的滲透性,提升元件開路電壓。此外,當以10 wt%之TiO2奈米粒子作為可印刷式電解質的添加劑,元件效率更可提升至9.12%,高於液態元件的表現(8.33%)。若將電池元件於60oC高溫環境下進行穩定性測試,發現純印刷式元件具有最佳的穩定度,在經過500小時後仍可維持87%之初始效率。本研究進一步應用此印刷式元件於室內光源下發電,並對光電極TiO2薄膜厚度進行調整,結果顯示此一元件在200 lux室內光源下之最大輸出功率密度可達10.65 μW/cm2。最後,配合上述最佳化條件製備可印刷式次模組元件,在標準光源下使用陣列式次模組之光電轉換效率可達6.78%,而在200 lux室內光源下採用長方型次模組之最大輸出功率密度則可達8.68 μW/cm2。

    In this study, printable electrolytes containing I-/I3- redox couples are developed with N719 dye for dye-sensitized solar cell (DSSC) applications. 3-methoxypropionitrile (MPN) is employed as a solvent with low volatility in order to reduce the electrolyte evaporation during the fabrication of solar cells. Two kinds of polymers, poly (ethylene oxide) (PEO) and poly (methyl methacrylate) (PMMA), are added simultaneously into electrolytes to regulate the viscosity achieving the requirement of printing. The results show that PEO is the required material to form the electrolyte paste, and the addition of PMMA can increase the ionic conductivity of the electrolyte to improve cells performance. However, a higher ratio of PMMA will lead to low viscosity of the electrolyte which is not proper to operate the printing process. The experimental results show that the optimal PEO/PMMA ratio and the overall polymer amount in an electrolyte are respectively 7:3 and 9 wt% with a limited viscosity of 16.94 Pa⸱s. The DSSC using this printable electrolyte can achieve a power conversion efficiency (PCE) of 8.49% under standard 1 sun irradiation (100 mW/cm2). Also, the viscous electrolyte performs an excellent penetration into TiO2 meso-porous matrix by using printing process, leading to higher open-circuit potential. When 10wt% TiO2 nanoparticle is introduced to the printable electrolyte, the PCE can further increase to 9.12%, which is much higher than that of the liquid cell. In addition, the DSSC employing printable electrolyte displays a stable photovoltaic performance during the aging test at 60 °C for 500 hours. By adjusting the thickness of TiO2 film, a power density (Pmax) of 10.65 μW/cm2 is obtained for the cells under 200-lux illumination. Furthermore, the printable electrolytes are applied to sub-module device under different light irradiation; a PCE of 6.78% and a Pmax of 8.68μW/cm2 are achieved under 100 mW/cm2 and 200-lux illumination respectively.

    摘要 I Extended abstract II 誌謝 VIII 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究目的與動機 3 第二章 實驗原理與文獻回顧 4 2-1 染料敏化太陽能電池介紹 4 2-1-1 工作原理 4 2-1-2 電子在DSSC的傳輸路徑 6 2-2 染料敏化太陽能電池之結構介紹 8 2-2-1 導電基板 9 2-2-2 氧化物半導體 10 2-2-3 光敏化劑 12 2-2-4 電解質 19 2-2-5 對電極 23 2-3 文獻回顧 25 2-3-1 膠態電解質 25 2-3-2 可印刷式電解質 26 2-3-3 染料敏化太陽能電池於低照度光源下之應用 27 2-3-4 染料敏化太陽能次模組 29 第三章 實驗器材與步驟 32 3-1 實驗藥品與材料 32 3-2 儀器原理與分析 34 3-2-1 太陽光模擬器(Solar Simulator) 34 3-2-2 電化學交流阻抗分析(EIS) 38 3-2-3 入射光子轉換效率量測系統(IPCE) 44 3-2-4 金屬濺鍍機(Sputter) 45 3-2-5 室內光量測系統 46 3-2-6 一般儀器 48 3-3 實驗流程及實驗原理 50 3-3-1 二氧化鈦薄膜製備 50 3-3-2 光電極敏化程序 51 3-3-3 對電極製備程序 51 3-3-4 電解質製備程序 52 3-3-5 染料敏化太陽能電池元件組裝 52 3-3-6 染料敏化太陽能次模組之製備 55 第四章 研究結果與討論 61 4-1 可印刷式電解質的製備 61 4-1-1 溶劑的選擇 61 4-1-2 高分子增稠劑的選擇 62 4-1-3 高分子增稠劑含量的調控 64 4-1-4 印刷式與灌注式製程之差異 67 4-2 添加奈米粒子於可印刷式電解質之影響 74 4-2-1 添加TiO2奈米粒子於可印刷式電解質之調控 74 4-2-2 添加TiO2奈米粒子於可印刷式電解質之電性分析 77 4-2-3 元件穩定性測試 80 4-3 可印刷式電解質之應用性 83 4-3-1 印刷式元件於室內光環境之應用 83 4-3-2-1 印刷式元件於室內光下之元件表現 84 4-3-2-2 室內光下光電極厚度的調控 85 4-3-2 染料敏化太陽能電池次模組之應用 87 第五章 結論與建議 89 5-1 結論 89 5-2 未來工作與建議 91 第六章 參考文獻 93

    [1] "Key World Energy Statistics," ed: International Energy Agency, 2015, p. 28.
    [2] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell," Nature, vol. 261, pp. 402-403, 1976.
    [3] B. O’regan and M. Grfitzeli, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, pp. 737-740, 1991.
    [4] A. Pandikumar, S. P. Lim, S. Jayabal, N. M. Huang, H. N. Lim, and R. Ramaraj, "Titania @ gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, vol. 60, pp. 408-420, 2016.
    [5] M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 3-14, 2004.
    [6] M. Grätzel, "Solar energy conversion by dye-sensitized photovoltaic cells," Inorganic chemistry, vol. 44, pp. 6841-6851, 2005.
    [7] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-sensitized solar cells," Chemical reviews, vol. 110, pp. 6595-6663, 2010.
    [8] Y. Y. Kuo and C. H. Chien, "Sinter-free transferring of anodized TiO2 nanotube-array onto a flexible and transparent sheet for dye-sensitized solar cells," Electrochimica Acta, vol. 91, pp. 337-343, 2013.
    [9] H. Weerasinghe, P. Sirimanne, G. Franks, G. Simon, and Y. Cheng, "Low temperature chemically sintered nano-crystalline TiO2 electrodes for flexible dye-sensitized solar cells," Journal of Photochemistry and Photobiology A: Chemistry, vol. 213, pp. 30-36, 2010.
    [10] S. Ito, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, et al., "High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode," Chemical Communications, pp. 4004-4006, 2006.
    [11] M. Grätzel, "Photoelectrochemical cells," Nature, vol. 414, pp. 338-344, 2001.
    [12] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis details and applications," Nano letters, vol. 8, pp. 3781-3786, 2008.
    [13] J. Jiu, S. Isoda, F. Wang, and M. Adachi, "Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film," The Journal of Physical Chemistry B, vol. 110, pp. 2087-2092, 2006.
    [14] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, pp. 510-519, 1961.
    [15] A. Hagfeldt and M. Grätzel, "Molecular photovoltaics," Accounts of Chemical Research, vol. 33, pp. 269-277, 2000.
    [16] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, et al., "Conversion of light to electricity by cis-X2bis(2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes," Journal of the American Chemical Society, vol. 115, pp. 6382-6390, 1993.
    [17] M. K. Nazeeruddin, P. Pechy, and M. Grätzel, "Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium complex," Chemical Communications, pp. 1705-1706, 1997.
    [18] M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, et al., "Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers," Journal of the American Chemical Society, vol. 127, pp. 16835-16847, 2005.
    [19] P. Wang, C. Klein, R. Humphry-Baker, S. M. Zakeeruddin, and M. Graetzel, "A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells," Journal of the American Chemical Society, vol. 127, pp. 808-809, 2005.
    [20] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. h. Ngoc-le, et al., "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells," ACS nano, vol. 3, pp. 3103-3109, 2009.
    [21] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, et al., "High-efficiency dye-sensitized solar cells: the influence of lithium ions on exciton dissociation, charge recombination, and surface states," ACS nano, vol. 4, pp. 6032-6038, 2010.
    [22] T. Bessho, S. M. Zakeeruddin, C. Y. Yeh, E. W. G. Diau, and M. Grätzel, "Highly efficient mesoscopic dye‐sensitized solar cells based on donor–acceptor‐substituted porphyrins," Angewandte Chemie, vol. 122, pp. 6796-6799, 2010.
    [23] A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, et al., "Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency," science, vol. 334, pp. 629-634, 2011.
    [24] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. Curchod, N. Ashari-Astani, et al., "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers," Nature chemistry, vol. 6, pp. 242-247, 2014.
    [25] S. Ito, S. M. Zakeeruddin, R. Humphry‐Baker, P. Liska, R. Charvet, P. Comte, et al., "High‐efficiency organic‐dye‐sensitized solar cells controlled by nanocrystalline‐TiO2 electrode thickness," Advanced Materials, vol. 18, pp. 1202-1205, 2006.
    [26] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, et al., "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye," Chemical Communications, pp. 5194-5196, 2008.
    [27] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, et al., "High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer," Chemical Communications, pp. 2198-2200, 2009.
    [28] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, et al., "Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks," Chemistry of Materials, vol. 22, pp. 1915-1925, 2010.
    [29] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. i. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical communications, vol. 51, pp. 15894-15897, 2015.
    [30] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Solar energy materials and solar cells, vol. 70, pp. 85-101, 2001.
    [31] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1) : the case of solar cells using the I-/I3- redox couple," The Journal of Physical Chemistry B, vol. 109, pp. 3480-3487, 2005.
    [32] R. Harikisun and H. Desilvestro, "Long-term stability of dye solar cells," Solar Energy, vol. 85, pp. 1179-1188, 2011.
    [33] P. Balraju, P. Suresh, M. Kumar, M. Roy, and G. Sharma, "Effect of counter electrode, thickness and sintering temperature of TiO2 electrode and TBP addition in electrolyte on photovoltaic performance of dye sensitized solar cell using pyronine G (PYR) dye," Journal of Photochemistry and photobiology A: Chemistry, vol. 206, pp. 53-63, 2009.
    [34] T. Stergiopoulos, E. Rozi, C. S. Karagianni, and P. Falaras, "Influence of electrolyte co-additives on the performance of dye-sensitized solar cells," Nanoscale research letters, vol. 6, p. 307, 2011.
    [35] H. G. Agrell, J. Lindgren, and A. Hagfeldt, "Coordinative interactions in a dye-sensitized solar cell," Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, pp. 23-27, 2004.
    [36] T. W. Hamann, "The end of iodide? Cobalt complex redox shuttles in DSSCs," Dalton Transactions, vol. 41, pp. 3111-3115, 2012.
    [37] S. M. Feldt, G. Wang, G. Boschloo, and A. Hagfeldt, "Effects of driving forces for recombination and regeneration on the photovoltaic performance of dye-sensitized solar cells using cobalt polypyridine redox couples," The Journal of Physical Chemistry C, vol. 115, pp. 21500-21507, 2011.
    [38] Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, "A platinum counter electrode with high electrochemical activity and high transparency for dye-sensitized solar cells," Electrochemistry Communications, vol. 12, pp. 1662-1665, 2010.
    [39] L. L. Li, C. W. Chang, H. H. Wu, J. W. Shiu, P. T. Wu, and E. W. G. Diau, "Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry, vol. 22, pp. 6267-6273, 2012.
    [40] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I2," Solar Energy Materials and Solar Cells, vol. 63, pp. 267-273, 2000.
    [41] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, et al., "Highly efficient dye-sensitized solar cells based on carbon black counter electrodes," Journal of the Electrochemical Society, vol. 153, pp. A2255-A2261, 2006.
    [42] K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, et al., "A high performance dye-sensitized solar cell with a novel nanocomposite film of PtNP/MWCNT on the counter electrode," Journal of Materials Chemistry, vol. 20, pp. 4067-4073, 2010.
    [43] L. Kavan, J. H. Yum, and M. Grätzel, "Optically transparent cathode for dye-sensitized solar cells based on graphene nanoplatelets," Acs Nano, vol. 5, pp. 165-172, 2010.
    [44] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells," Chemical communications, vol. 46, pp. 5367-5369, 2010.
    [45] F. Cao, G. Oskam, and P. C. Searson, "A solid state, dye sensitized photoelectrochemical cell," The Journal of Physical Chemistry, vol. 99, pp. 17071-17073, 1995.
    [46] P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, "High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte," Chemical Communications, pp. 2972-2973, 2002.
    [47] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, "A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte," Nature materials, vol. 2, pp. 402-407, 2003.
    [48] C. L. Chen, H. Teng, and Y. L. Lee, "Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly (acrylonitrile-co-vinyl acetate)," Journal of Materials Chemistry, vol. 21, pp. 628-632, 2011.
    [49] C. L. Chen, H. Teng, and Y. L. Lee, "In-situ gelation of electrolytes for highly efficient gel‐state dye‐sensitized solar cells," Advanced Materials, vol. 23, pp. 4199-4204, 2011.
    [50] C. L. Chen, T. W. Chang, H. Teng, C. G. Wu, C. Y. Chen, Y. M. Yang, et al., "Highly efficient gel-state dye-sensitized solar cells prepared using poly (acrylonitrile-co-vinyl acetate) based polymer electrolytes," Physical Chemistry Chemical Physics, vol. 15, pp. 3640-3645, 2013.
    [51] R. X. Dong, S. Y. Shen, H. W. Chen, C. C. Wang, P. T. Shih, C. T. Liu, et al., "A novel polymer gel electrolyte for highly efficient dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 1, pp. 8471-8478, 2013.
    [52] C. Wang, L. Wang, Y. Shi, H. Zhang, and T. Ma, "Printable electrolytes for highly efficient quasi-solid-state dye-sensitized solar cells," Electrochimica Acta, vol. 91, pp. 302-306, 2013.
    [53] S. J. Seo, H. J. Cha, Y. S. Kang, and M. S. Kang, "Printable ternary component polymer-gel electrolytes for long-term stable dye-sensitized solar cells," Electrochimica Acta, vol. 145, pp. 217-223, 2014.
    [54] T. C. Wei, H. H. Chen, Y. H. Chang, and S. P. Feng, "Hydrophobic electrolyte pastes for highly durable dye-sensitized solar cells," Journal of The Electrochemical Society, vol. 161, pp. H214-H219, 2014.
    [55] S. Venkatesan, S. C. Su, W. N. Hung, I. P. Liu, H. Teng, and Y. L. Lee, "Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application," Journal of Power Sources, vol. 298, pp. 385-390, 2015.
    [56] I. P. Liu, W. N. Hung, H. Teng, S. Venkatesan, J. C. Lin, and Y. L. Lee, "High-performance printable electrolytes for dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 5, pp. 9190-9197, 2017.
    [57] N. Sridhar and D. Freeman, "A study of dye sensitized solar cells under indoor and low level outdoor lighting: comparison to organic and inorganic thin film solar cells and methods to address maximum power point tracking," in 26th European photovoltaic solar energy conference and exhibition, 2011, pp. 232-6.
    [58] C. L. Wang, P. T. Lin, Y. F. Wang, C. W. Chang, B. Z. Lin, H. H. Kuo, et al., "Cost-effective anthryl dyes for dye-sensitized cells under one sun and dim light," The Journal of Physical Chemistry C, vol. 119, pp. 24282-24289, 2015.
    [59] F. De Rossi, T. Pontecorvo, and T. M. Brown, "Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting," Applied Energy, vol. 156, pp. 413-422, 2015.
    [60] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, et al., "Dye-sensitized solar cells for efficient power generation under ambient lighting," Nature Photonics, 2017.
    [61] H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, et al., "Efficient dye-sensitized solar cell sub-modules," Current Applied Physics, vol. 10, pp. S157-S160, 2010.
    [62] Y. Liu, H. Wang, H. Shen, and W. Chen, "The 3-dimensional dye-sensitized solar cell and module based on all titanium substrates," Applied Energy, vol. 87, pp. 436-441, 2010.
    [63] W. J. Lee, E. Ramasamy, and D. Y. Lee, "Effect of electrode geometry on the photovoltaic performance of dye-sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 93, pp. 1448-1451, 2009.
    [64] Y. D. Zhang, X. M. Huang, K. Y. Gao, Y. Y. Yang, Y. H. Luo, D. M. Li, et al., "How to design dye-sensitized solar cell modules," Solar Energy Materials and Solar Cells, vol. 95, pp. 2564-2569, 2011.
    [65] T. C. Wei, Y. H. Chang, S. Feng, and H. H. Chen, "A semi-experimental method for fast evaluation of the performance of grid-type dye-sensitized solar module," International Journal of Electrochemical Science, 2013.
    [66] X. Huang, Y. Shang, H. Sun, D. Li, and Y. Luo, "A new figure of merit for qualifying the fluorine-doped tin oxide glass used in dye-sensitized solar cells," Journal of Renewable and Sustainable Energy, vol. 1, p. 063107, 2009.
    [67] R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, et al., "New interdigital design for large area dye solar modules using a lead‐free glass frit sealing," Progress in Photovoltaics: Research and Applications, vol. 14, pp. 697-709, 2006.
    [68] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module," in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011, pp. 2C-5O.
    [69] A. Hauch and A. Georg, "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells," Electrochimica Acta, vol. 46, pp. 3457-3466, 2001.
    [70] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, and S. Isoda, "Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy," The Journal of Physical Chemistry B, vol. 110, pp. 13872-13880, 2006.
    [71] W. N. Hung, "Development of printable electrolytes for dye-sensitized solar cells and its application on different lighting conditions," Master thesis, National Cheng Kung University, 2016.
    [72] K. M. Lee, V. Suryanarayanan, and K. C. Ho, "Influences of different TiO2 morphologies and solvents on the photovoltaic performance of dye-sensitized solar cells," Journal of Power Sources, vol. 188, pp. 635-641, 2009.

    下載圖示 校內:2022-07-05公開
    校外:2022-07-05公開
    QR CODE