| 研究生: |
翁賜齡 Weng, Si-Ling |
|---|---|
| 論文名稱: |
以氧化鋯薄膜增強多孔鈦的機械性質與生物表現性 Development of zirconia film coating on porous-titanium for mechanical properties and biocompatibility enhancement |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 共同指導: |
劉浩志
Liu, Bernard HaoChih 王士豪 Wang, Shyh-Hau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 鈦 、多孔 、氧化鋯 、薄膜塗層 、承載力 、生物材 |
| 外文關鍵詞: | titanium, porous, zirconia, thin-film coating, load-bearable, biomaterial |
| 相關次數: | 點閱:199 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多孔鈦在生醫材料界已發展多年,相關應用與製程也不可計數,近來植入材發展漸漸走向複合材料,不僅要有一定的機械性質,能誘導骨細胞生長,對生物體也要不具毒性。有鑑於此本實驗應用溶膠凝膠法在多孔鈦上製備氧化鋯薄膜作為研究方向而努力。
本實驗採用傳統粉末冶金製備多孔鈦,在造孔劑移除方面使用水熱法取代傳統的燒結或超音波震盪移除。利用溶膠凝膠法在試片結構覆蓋具生物惰性的氧化鋯薄膜並進行力學性質和生物測試。於化性方面以XRD與XPS及EDS對試片做成份分析,物性方面以分析表面形貌的SEM與AFM和測量孔隙率之阿基米得原理及壓縮測試來分析試片。力學性質上抗壓強度期望能達到ISO 5833 (Implant for surgery)規範人體植入材最低強度的70 MPa,表面硬度與剛性需與人骨硬度相符合。生物相容性測試方面化依據ISO 10993 (醫療器材生物相容性評估)進行降解產物測試,並且於試片上培養纖維母細胞(L929)並同時進行細胞毒性(LDH)和細胞活性測試(MTS)。
從XRD分析及晶格常數計算發現多孔鈦最合適燒結溫度是1000℃。孔隙率經由阿基米德法量測實際值與預期值並無太大差異。XPS與SEM的表面元素分析(EDS)中都能偵測到試片中含有鋯的訊號,確認氧化鋯覆蓋於試片表面。多孔試片Z-P-Ti_35~55的抗壓強度符合ISO 5833規範人體植入材最低強度70MPa,另外微觀觀測上有鍍膜的試片比沒有鍍膜的試片無論在剛性、微硬度和表面粗糙度都有顯著提升,顯示氧化鋯著實提升試片的機械性質表現。降解產物測試中不論在極端或生物模擬溶液下鋯離子濃度皆保持一定。經MTS和LDH細胞毒性測試孔隙率越高的試片其細胞生長性與存活率越高,死亡率則沒有變化。
綜合以上結論,造孔劑添加55%鍍有氧化鋯薄膜的多孔鈦試片因為符合ISO規範強度且有相對高的孔細率與細胞存活率,適合作為未來臨床應用的參數。
Porous titanium (Ti)-based scaffolds are a promising approach for achieving stiffness reduction. To be used as a biomaterial, porous Ti scaffolds (P-Ti) must have suitable wear and corrosion resistance and the generation of either metallic wear debris or Ti ion release should be insignificant throughout a large timescale. The present study combines a porous structure appropriate for cell ingrowth with a physically and chemically stable thin-film coating to create a load-bearing bio-inspired scaffold. The as-designed zirconia-coated P-Ti (Z-P-Ti) was made via a hydrothermal process, followed by a sol-gel method. Mechanical tests were conducted primarily on P-Ti, and chemical stability tests were conducted on Z-P-Ti. The biocompatibility test results correlated with cell mitigation into Z-P-Ti were compared with those for reference surfaces. The results show that Z-P-Ti is load-bearable with an increased surface hardness and roughness. L929 cell morphology and viability assessed using the live/dead cell staining protocol show a significant enhancement of cell affinity on the surface of Z-P-Ti. The combination of porous Ti, a load-bearable structure, and biocompatible zirconia coating makes the designed biomaterial promising for many applications, such as vertebral discs.
參考文獻
[1] M. Geetha, A .K. Singh, R. Asokamani, and A .K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants–a review", Progress in Materials Science, Vol. 54, pp. 397-425, 2009.
[2] S. V. Dorozhkin, "Bioceramics of calcium orthophosphates", Biomaterials , Vol. 31, pp. 1465-1485, 2010.
[3] F. M. Chen and X. Liu, "Advancing biomaterials of human origin for tissue engineering", Progress in Polymer Science , Vol. 53, pp. 86-168, 2016.
[4] A. Arifin, A. B. Sulong, N. Muhamad, J. Syarif, and M. I. Ramli, "Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review", Materials and Design, Vol: 55, pp. 165-175, 2015.
[5] F. J. O'brien, "Biomaterials & scaffolds for tissue engineering", Materials today, Vol: 14(3), pp. 88-95, 2011.
[6] Y. Chen, J. E. Frithc, A. D. Manshadia, H. Attara, D. Kent, N. D. M. Soroa, M. J. Bermingham, and M. S. Dargusch, "Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 75, pp. 169-174, 2017.
[7] K. Steven, "Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030", The Journal of Bone and Joint Surgery, Vol. 89, pp. 780-785, 2007.
[8] S. Graves, D. Davidson, and A. Tomkins, "Australian orthopaedic association national joint replacement registry annual report 2010", Adelaide, 2009.
[9] W. Kathy, "The use of titanium for medical applications in the USA", Materials Science and Engineering: A, Vol. 213, pp. 134-137, 1996.
[10] W. Shuilin, "Biomimetic porous scaffolds for bone tissue engineering", Materials Science and Engineering: R: Reports, Vol. 80, pp. 1-36, 2014.
[11] J. M. Holzwarth and P. X. Ma, " Biomimetic nanofibrous scaffolds for bone tissue engineering", Biomaterials, Vol. 32.36, pp. 9622-9629, 2011.
[12] J. G. Mcarthy, S. Jonathan, K. Nolan, H. T. Charles, and B. H. Grayson, "Lengthening the human mandible by gradual distraction", Plastic and Reconstructive Surgery, Vol. 89, pp. 1-8, 1992.
[13] R. Z. Legeros and R. G. Craig, "Strategies to affect bone remodeling:
osteointegration", Journal of Bone and Mineral Research, Vol. 8, 1993 .
[14] G. Kotan and A. Şakir Bor, "Production and characterization of high porosity Ti-6Al-4V foam by space holder technique in powder metallurgy", Turkish Journal of Engineering and Environmental Sciences, Vol. 31(3), pp. 149-156, 2007
[15]Z Esen and Ş Bor, "Processing of titanium foams using magnesium spacer particles", Scripta Materialia, Vol. 56.5, pp. 341-344, 2007.
[16]W. K. Sung, D. J. Hyun, H. K. Min, E. K. Hyoun, H. K. Young, and Estrin. Y, "Fabrication of porous titanium scaffold with controlled porous structure and net-shape using magnesium as spacer", Materials Science and Engineering: C, Vol. 33.5, pp. 2808-2815, 2013.
[17]N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A. K. Jha, and A. K. Khare, "Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route", Materials and Design, Vol. 47, pp. 810-819, 2013.
[18]Z. Wang, X. Jiao, P. Feng, X. Wang, Z. Liu, and F. Akhtar, "Highly porous open cellular TiAl-based intermetallics fabricated by thermal explosion with space holder process", Intermetallics, Vol. 68, pp. 95-100, 2016.
[19] C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, and Asahina, "Processing of biocompatible porous Ti and Mg", Scripta Materialia, Vol. 45, pp. 1147-1153, 2001.
[20]O. Smorygo, A. Marukovich, V. Mikutski, A. A. Gokhale, G. J. Reddy, and J. V. Kumar, " High-porosity titanium foams by powder coated space holder compaction method", Materials Letters, Vol. 83, pp. 17-19, 2012.
[21] B. Ampika and D. C. Dunand, "Shape-memory NiTi foams produced by solid-state replication with NaF", Intermetallics, Vol. 15, pp. 1612-1622, 2007.
[22]Y. Torres, J. J. Pavón, and J. A. Rodríguez, "Processing and characterization of porous titanium for implants by using NaCl as space holder", Journal of Materials Processing Technology, Vol. 212.5, pp. 1061-1069, 2012.
[23]T. Aydoğmuş and Ş. Bor, "Processing of porous TiNi alloys using magnesium as space holder", Journal of alloys and compounds, Vol. 478(1), pp. 705-710, 2009.
[24] K. Nishiyabu, S. Matsuzaki, K. Okubo, M. Ishida, and S. Tanaka, "Porous graded
materials by stacked metal powder hot-press moulding", Material Science Forum,
Vol. 492, pp. 765, 2005.
[25] K. Nishiyabu, K. Matsuzaki, and S. Tanaka, "Net-shape manufacturing of micro
porous metal components by powder injection molding", Material Science Forum,
Vol. 534, pp. 981, 2007.
[26] A. K. Gain, H. Y. Song, and B. T. Lee, "Microstructure and mechanical properties
of porous yttria stabilized zirconia ceramic using poly methyl methacrylate powder",
Scripta Materialia, Vol. 54, pp. 2081, 2006.
[27] M. Köhl, T. Habijan, M. Bram, H. P. Buchkremer, D. Stover, and M. Koller,
"Powder metallurgical near-net-shape fabrication of porous NiTi shape memory alloys
for use as long-term implants by the combination of the metal injection molding
process with the space-holder technique", Advance Engineering Materials, Vol. 11,
pp. 959, 2009.
[28] Y. Quan, F. Zhang, H. Rebl, B. Nebe, O. Keßler, and E. Burkel, "Ti 6 Al 4 V foams fabricated by spark plasma sintering with post-heat treatment", Materials Science and Engineering: A, Vol. 565, pp. 118-125, 2013.
[29] Y. Torres , S. Lascano, J. Bris, J. Pavón, and J. A. Rodriguez, "Development of porous titanium for biomedical applications: A comparison between loose sintering and space-holder techniques", Materials Science and Engineering: C, Vol. 37, pp. 148-155, 2014.
[30] M. Gahlert, T. Gudehus, S. Eichhorn, E. Steinhauser, H. Kniha, and W. Erhardt, "Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs", Clinical Oral Implants Research, Vol. 18, pp. 662-668, 2007.
[31] S. Muñoz, J. Pavón, J. A. R. Ortiz, A. Civantos, J. P. Allain, and Y. Torres, " On the influence of space holder in the development of porous titanium implants: Mechanical, computational and biological evaluation", Materials Characterization, Vol. 108, pp. 68-78, 2015.
[32] R. K. Alla, K. Ginjupalli, N. Upadhya, M. Shammas, R. K. Ravi, and R. Sekhar, "Surface roughness of implants: a review", Trends in Biomaterials and Artificial Organs, Vol. 25, pp. 112-118, 2011.
[33] H. H. Huang, C. T. Ho, T. H. Lee, T. L. Lee, K. K. Liao and F. L. Chen, "Effect of surface roughness of ground titanium on initial cell adhesion", Biomolecular Engineering, Vol. 21, pp. 93-97, 2004.
[34] D. D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee, and Y. F. Missirlis, "Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption", Biomaterials, Vol. 22, pp. 1241-1251, 2011.
[35] D. Yamashita, M. Machigashira, M. Miyamoto, H. Takeuchi, K. Noguchi, Y. Izumi and, S. Ban, "Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia", Dental Materials Journal, Vol. 28, pp. 461-470, 2009.
[36] H. Begam, B. Kundu, A. Chanda, and S. K. Nandi, "MG63 osteoblast cell response on Zn doped hydroxyapatite (HAp) with various surface features", Ceramics International, Vol. 43, pp. 3752-3760, 2017.
[37]T. S. N. Silva, D. C. Machado, C. Viezzer, A. N. S. Júnior, and M. G. Oliveira,
"Effect of titanium surface roughness on human bone marrow cell proliferation and
differentiation: an experimental study", Acta Cirurgica Brasileira, Vol. 24.3, pp. 200-
205, 2009.
[38] R. A. Gittens, T. McLachlan, Y. Cai1, S. Berner, R. Tannenbaum, Z. Schwartz, K.
H. Sandhage, and B. D. Boyan, "The effects of combined micron-/submicron-scale
surface roughness and nanoscale features on cell proliferation and differentiation
", Biomaterials, Vol. 32.13, pp. 3395-3403, 2011.
[39] M. Hisbergues, S. Vendeville, and P. Vendeville, "Review zirconia: established facts and perspectives for a biomaterial in dental implantology", Journal of Biomedical Materials Research Part B: Applied Biomaterial, Vol. 88, pp. 519-29, 2009.
[40] C. Piconi and Maccauro, "Zirconia as a ceramic biomaterial", Biomaterials, Vol. 20, pp. 1-25, 1999.
[41]Z. Özkurt, U. Iseri, and E. Kazazoglu, "Zirconia ceramic post systems: a literature review and a case report", Dental materials journal, Vol. 29(3), pp. 233-245, 2010.
[42] R. Jayakumar, R. Ramachandran, V. V. Divyarani, K. P. Chennazhi, H. Tamura, and S. V. Nair, "Fabrication of chitin–chitosan/nano TiO2-composite scaffolds for tissue engineering applications", International Journal of Biological Macromolecules, Vol. 48, pp. 336-344, 2011.
[43]王信鈞, "氧化鋯陶瓷牙科材料之沖腐蝕損耗及微奈米力學性質之研究", 成功大學奈米科技暨微系統工程研究所學位論文, pp. 1-102, 2009.
[44] W. Kriven, "Martensitic toughening of ceramics," Material Science and Engineering: A, Vol. 127, pp. 249-255, 1990.
[45] M. A. Tara, S. Eschbach, S. Wolfart, and M .Kern, "Zirconia ceramic inlay-retained fixed dental prostheses–first clinical results with a new design", Journal of Dentistry, Vol. 39(3), pp. 208-211, 2011.
[46]C. Piconi and G. Maccauro, "Zirconia as a ceramic biomaterial", Biomaterials, Vol. 20(1), pp. 1-25, 1999.
[47] Y. Josset, Z. O. Hamed, A. Zarrinpour, M. Lorenzato, J. J. Adnet, and D. L. Maquin, "In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics", Journal of Biomedical Materials Research, Vol. 47, pp. 481-493, 1999.
[48] A. Pae, H. Lee, H. S. Kim, Y. D. Kwon, and Y. H. Woo, "Attachment and growth behavior of human gingival fibroblasts on titanium and zirconia ceramic surfaces", Biomedical Materials, Vol. 4, pp. 025005, 2009.
[49] V. Sollazzo, F. Pezzetti, A. Scarano, A .Piattelli, C. A. Bignozzi, L. Massari, and F. Carinci, "Zirconium oxide coating improves implant osseointegration in vivo", Dental Materials, Vol. 24, pp. 357-361, 2008.
[50] L. Mikhalovska, N. Chorna, O. Lazarenko, P. Haworth, A. Sudre, and S. Mikhalovsky, "Inorganic coatings for cardiovascular stents: In vitro and in vivo studies", Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 96, pp. 333-341, 2011.
[51] Y. Yan and Y. Han, "Structure and bioactivity of micro-arc oxidized zirconia films", Surface and Coatings Technology, Vol. 201, pp. 5692-5695, 2007.
[52] K. P. Ananth, S. Suganya, D. Mangalaraj, J. M. F. Ferreira, and A. Balamurugan, "Electrophoretic bilayer deposition of zirconia and reinforced bioglass system on Ti6Al4V for implant applications: an in vitro investigation", Materials Science and Engineering: C, Vol. 33, pp. 4160-4166, 2013.
[53] H. Hidalgo, E. Reguzina, E. Millon, A. L. Thomann, J. Mathias, C. B. Leborgne, and P. Brault, "Yttria-stabilized zirconia thin films deposited by pulsed-laser deposition and magnetron sputtering", Surface and Coatings Technology, Vol. 205, pp. 4495-4499, 2011.
[54] M. L. Zheludkevich, I. M. Salvado, and M. G. S. Ferreira, "Sol–gel coatings for corrosion protection of metals", Journal of Materials Chemistry, Vol. 15, pp. 5099-5111, 2005.
[55] G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C. M. Han, C. Mahapatra, H. W. Kim, and J. C. Knowles, "Sol–gel based materials for biomedical applications", Progress in Materials Science, Vol. 77, pp. 1-79, 2016.
[56] V. Regí and Maria, "Ceramics for medical applications", Journal of the Chemical Society, Dalton Transactions, Vol. 2, pp. 97-108, 2001.
[57] X. Li, C. T. Wang, W. G. Zhang, and Y. C. Li, "Properties of a porous Ti-6Al-4V
implant with a low stiffness for biomedical application", Proceedings of the Institution
of Mechanical Engineers Part H: Journal of Engineering in Medicine, Vol. 223, pp.
173-178, 2009.
[58] K. Byrappa and T. Adschiri, "Hydrothermal technology for nanotechnology", Progress in Crystal Growth and Characterization of Materials, Vol. 53, pp. 117-166, 2007.
[59] T. Matthew, J. G. Harris, and J. W. Tester, "Molecular simulations of dense hydrothermal NaCl− H2O solutions from subcritical to supercritical conditions", The Journal of Physical Chemistry B, Vol. 103, pp. 7935-7941, 1999.
[60] Onoki, Takamasa, "Porous apatite coating on various titanium metallic materials via low temperature processing", Biomaterials Science and Engineering. In Tech, 2011.
[61] Andrade, M. Calixto, M. R. T. Filgueiras, and T. Ogasawara, "Hydrothermal nucleation of hydroxyapatite on titanium surface", Journal of the European Ceramic Society, Vol. 22, pp. 505-510, 2002.
[62] I. H. Oh, N. Nomura, and S. Hanada, "Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering", Materials Transactions, Vol. 43, pp. 443-446, 2002.
[63] M. V. Berridge and S. T. An, "Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction", Archives of Biochemistry and Biophysics, Vol. 303, pp. 474-482, 1993.
[64] J. A. Baltrop, "5-((3-Carboxyphenyl)-3-(4, 5-dimethylthiazolyl)-3-(4-sulfophenyl)) tetrazolium, inner salt (MTS) and related analogs of 2-(4, 5-dimethylthiazolyl)-2, 5-diphenylterazolium bromide (MTT) reducing to purple water soluble formazan as cell-viability indicators", Bioorganic and Medicinal Chemistry Letters, Vol. 1, pp. 611, 1991.
[65] S. J. Kim and T. H. Chung, "Cold atmospheric plasma jet-generated RONS and their selective effects on normal and carcinoma cells", Scientific Reports, Vol. 6, 2016.
[66] Y. Oshida, "Bioscience and bioengineering of titanium materials", Elsevier, 2010.
[67] R. C. C. Weast, M. J. Astle, and William H. Beyer, "CRC handbook of chemistry and physics", Vol. 69, pp. 163, 1988.
[68] B. Cimatti, E. E. Engel, M. H. N. Barbosa, P. D. Frighetto, and J. B. Volpon, "61 cement for metaphyseal bone repair", Acta Ortopédica Brasileira, pp. 23, 2015.
[69]Standard British and BSEN ISO, " Biological evaluation of medical devices—Part 14: identification and quantification of degradation products from ceramics",
[70] Kasper, J., Hermanns, M. I., Bantz, C., Koshkina, O., Lang, T., Maskos, M., ... & Kirkpatrick, C. J. (2013). Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins. Archives of toxicology, 87(6), 1053-1065.
2001.
[72] 蘇宇涵, "以改良式水熱法製備仿生多孔鈦支架之研究", 成功大學材料科學及工程學系學位論文, pp. 1-75, 2015.
[73] H. Tiainen, G. Eder, O. Nilsen, and H. J. Haugen, "Effect of ZrO 2 addition on the mechanical properties of porous TiO2 bone scaffolds", Materials Science and Engineering: C, Vol: 32(6), pp. 1386-1393, 2012.
[74]H. D. Jung, H. E. Kim, and Y. H. Koh, "Production and evaluation of porous titanium scaffolds with 3-dimensional periodic macrochannels coated with microporous TiO2 layer", Materials Chem, 2012.