簡易檢索 / 詳目顯示

研究生: 胡勝哲
Hu, Sheng-Che
論文名稱: 超高性能纖維強化混凝土介觀力學模型之分析
Analysis of ultra-high performance fiber reinforced concrete with meso-mechanical model
指導教授: 胡宣德
Hu, Hsuan-Teh
共同指導教授: 戴毓修
Tai, Yuh-Shiou
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 82
中文關鍵詞: 介觀力學模型超高性能混凝土鋼纖維Ls-Dyna
外文關鍵詞: meso-mechanical, ultra-high performance concrete, steel fiber, Ls-Dyna
相關次數: 點閱:191下載:39
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混凝土為目前最常使用的工程建築材料之一,隨著社會經濟的進步,工程結構朝著高樓層、大跨度的方向發展,而為了滿足使用與設計上的需求,混凝土的強度不斷的提升,從普通強度混凝土到強度大於42MPa的高強度混凝土。在1990年代,法國公司Bouygues研發出了活性粉末混凝土(reactive powder concrete, RPC),使得混凝土抗壓強度可以在200MPa左右。而在1994年,Larrard等人首次提出了超高性能混凝土(ultra-high performance concrete, UHPC)的概念。
    然而,純粹提高混凝土的抗壓強度並不能改變其具有高脆性、抗拉強度低的問題,一旦達到極限強度,混凝土便會瞬間爆裂以至於無法承受載重。加入鋼纖維將可增強其韌性、提升抗拉強度。因此,超高性能纖維強化混凝土(utra-high performance fiber reinforced concrete, UHPFRC)成為了目前研究與發展的新方向。
    為了探討UHPFRC受力過程中,纖維與基材間的握裹行為及材料在不同受力狀態下的力學特性,本論文利用有限元素法結合纖維三維隨機分佈理論,建立了介觀尺度下,具隨機分佈纖維強化超高性能混凝土的數值模型,同時,為了降低模型建立的困難度,並縮短數值運算時所需之時間,本論文中利用樑元素模擬了光滑平直型鋼纖維,,並將結果與文獻中的實驗進行比較,驗證了分析結果之可靠性。
    在本文中將以纖維拉拔模擬比較樑元素與實體元素模擬纖維之差異,並以此模型探討纖維與混凝土之介觀力學行為。另外,以單軸抗壓與三點彎矩試驗模型模擬超高性能混凝土在加入鋼纖維前後之抗壓、抗彎特性,並觀察試體內部之塑性應變及纖維受力情形。研究結果顯示,以樑元素模擬鋼纖維可以有效的縮短分析時間,並且得到良好的結果,亦可以透過剪力黏結模數的適當設定,模擬出纖維在不同基材強度下的黏結狀況。纖維帶給超高性能混凝土之韌性可以在三點彎矩模型中看到,且UHPFRC所能承受的最大力量與纖維含量之體積比略呈線性成長。纖維混凝土試體抗壓強度由外而內逐漸增強,與支承接觸附近則因應力集中和纖維分布較少呈現脆性破壞。

    Concrete have been one of the most commonly used building materials in this years. Alone with the improvement of social and economic, engineering structurs have been a high floor and large-span. The strength of concrete constantly upgrading from normal strength concrete to concrete which strength is greater then 42MPa, in order to meet the needs of design. In the 1990s, French company Bouygues developed a reactive powder concrete (RPC), so that the compressive strength of concrete con be about 200MPa. And then Larrard first proposed the concept of ultra-high performance concrete (UHPC) in 1994.
    However, purely to improve the compressive strength of concrete does not change its problem of high brittleness and low tensile strength. Once they reach the ultimate strength of concrete will burst instantly so that they can not bear the load. Added steel fibers will enhance its toughness and improve the tensile strength. Therefore, ultra-high performance fiber-reinforced concrete (UHPFRC) has become the new direction of the research and development currently.
    In order to explore bond behavior of UHPFRC and mechanical properties of materials under different loading states between the fibers and the matrix, , the research used finite element method with three-dimensional random fiber distribution theory to set up the numerical model, which have random fibers distribution of ultra-high performance concrete in mesoscopic scale. Simultaneously, in order to reduce the difficulty of building model and shorten the time required when the numerical calculation, the research used beam elements to simulate the smooth and straight steel fibers, and compare with the results of experiments of literature to verify the reliability of the analysis results.
    The difference of beam elements and solid element fiber simulation will discuss in the fiber pullout model, and used this model to investigate meso-mechanical behavior between fiber and concrete. In addition, used uniaxial compressive test and three point bending test model to investigate plastic strain and forced process of fibers. The results show that ues beam element to simulate the steel fibers can effectively shorten the analysis time and get good results. The toughness of UHPFRC can be seen in the model of three point bending test. The compressive strength of UHPFRC increase form outside to inside geadually.

    摘要 i 目錄 viii 表目錄 x 圖目錄 xi 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 研究方法 5 1.4 論文架構 5 第二章 材料性質與纖維拉拔行為 7 2.1 鋼纖維 7 2.1-1 鋼纖維種類 7 2.1-2 鋼材的力學行為 8 2.2 混凝土 10 2.2-1 超高性能混凝土 10 2.2-2 Karagozian & Case (K&C) 混凝土模型 12 2.3 纖維拉拔行為 14 2.4 直纖維拉拔理論模型 15 第三章 纖維混凝土介觀力學模型 21 3.1 介觀模型理論 21 3.2 纖維強化混凝土之介觀力學模型 23 3.3 三維隨機分布之纖維節點生成 27 第四章 UHPC與UHPFRC之靜態模擬分析 31 4.1 直纖維拉拔模型描述 31 4.2 單軸抗壓試驗模型描述 32 4.3 三點彎矩試驗模型描述 33 4.4 材料參數 34 4.5 網格切割 37 4.6 邊界條件及載重設定 41 4.6-1 直纖維拉拔模型 41 4.6-2 單軸抗壓與三點彎矩之純混凝土模型 41 4.6-3 含多纖維之單軸抗壓及三點彎矩模型 41 4.7 接觸設定 42 4.7-1 混凝土與支承鋼材之接觸 42 4.7-2 混凝土與鋼纖維之接觸 43 第五章 分析結果 45 5.1 直纖維拉拔分析結果 45 5.1-1 樑元素模擬與理論模型比較 45 5.1-2 樑元素與實體元素模擬纖維之比較 47 5.2 網格收斂性分析 50 5.2-1 單軸抗壓試驗模型 50 5.2-2 三點彎矩試驗模型 53 5.3 不同體積比之鋼纖維分析結果 56 5.3-1 單軸抗壓試驗模型 56 5.3-2 三點彎矩試驗模型 67 第六章 結論與建議 73 6.1 結論 73 6.2 未來研究建議 75 參考文獻 76

    [1] A.E. Naaman, F. M. Alkhairi, H. Hammoud. (1993). High Early Strength Fiber Reinforced Concrete. University of Michigan, Ann Arbor

    [2] A.M.T.Hassan, S.W. Jones, G.H.Mahmud. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Construction and Building Materials 37 874–882

    [3] A. Caggiano, G. Etse, E. Martinelli. (2011). Interface model for fracture behaviour of fiberreinforced cementitious composites (FRCCs). European Journal of Environmental and Civil Engineering

    [4] A. Caggiano. (2013). Meso-mechanical analysis of steel fiber reinforced cementitious composites. Universidad Nacional de Tucumán

    [5] B. D. Ellis. (2013). Multiscale modeling and design of Ultra-High-Performance Concrete. Georgia Institute of Technology, United States

    [6] C. Jin, N. Buratti, M. Stacchini, M. Savoia, G. Cusatis. (2015). Lattice discrete particle modeling of fiber reinforced concrete: Experiments and simulations. European Journal of Mechanics A/Solids 57 85e107

    [7] Crawford, Y. Wu, J. M. Magallanes, H. J. Choi, S. Lan . (2012). Use andvalidation of the release II K&C concrete material model in LS-DYNA. Karagozian & Case, Glendale.

    [8] D.Y. Yoo, H.O. Shin, J.M. Yang, Y.S. Yoon. (2013). Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Composites: Part B 58 122–133

    [9] E. Fehling, M. Schmidt, S. Sturwald. (2008). Ultra High Performance Concrete (UHPC). University of Kassel, Germany

    [10] E. Schlangen, E. J. Garboczi. (1997). Fracture simulation of concrete using Lattice Models: Computational aspects, Engineering Fracture Mechanics Vol. 57, No. 2/3, pp. 319–332

    [11] E. A. Schauffert, G. Cusatis. (2012). Lattice Discrete Particle Model for Fiber-Reinforced Concrete. I: Theory. American Society of Civil Engineers

    [12] F. de Larrard, T. Sedran. (1994). Optimization of Ultra-High-Performance Concrete by the use of a packing model. Cem. Concr. Res., 24 (6), pp. 997–1009

    [13] G. Cusatis, D. Pelessone, A. Mencarelli. (2011). Lattice Discrete Particle Model (LDPM) for failure behavior of concrete. I: Theory. Cement & Concrete Composites 33 881–890

    [14] G. H. Mahmud, Z. Yang, A.M.T. Hassan. (2013). Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building Materials 48 1027–1034

    [15] H. Najm, A.E. Naaman, T.J. Chu, R.E. Robertson. (1994). Effects of Poly(vinyl alcohol) on Fiber Cement Interfaces. Part I: Bond Stress-Slip Response. ADVANCED CEMENT BASED MATERIALS 1, 115–121

    [16] H.H. Bache. (1981). Densified cement/ultra-fine particle-based materials. Second International Conference on Superplasticizers in Concrete

    [17] I. H. Yang, C. Joh, B. S. Kim. (2010). Structural behavior of ultra high performance concrete beams subjected to bending. Engineering Structures 32 3478–3487

    [18] J. M. Alwan, A. E. Naaman, W. Hansen. (1991). Pull-Out Work of Steel Fibers From Cementitious Composites: Analytical Investigation. Cement & Concrete Composites 13 247–255

    [19] J.D. Birchall. (1983). Cement in the context of new materials for an energyexpensive future. Phil. Trans. R. Soc. Lond., A310, pp. 31–42

    [20] J. Kang, K. Kim, Y. M. Lim, J. E. Bolander. (2014). Modeling of fiber-reinforced cement composites: Discrete representation of fiber pullout. International Journal of Solids and Structures 51 1970–1979

    [21] J. L. Smith. (2014). Characterization of Ultra-High Performance Concrete for Impact Resistant Structures. Northwestern University, United States

    [22] K. Habel, P. Gauvreau. (2008). Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cement & Concrete Composites 30 938–946

    [23] K. Wille, A. E. Naaman. (2012). Pullout Behavior of High-Strength Steel Fibers Embedded in Ultra-High-Performance Concrete. ACI Materials Journal, V. 109, No. 4

    [24] L. Mao, S. Barnett, D. Begg, G. Schleyer , G. Wight. (2013). Numerical simulation of ultra high performance fibre reinforced concrete panel subjected to blast loading. International Journal of Impact Engineering 64 91e100

    [25] L. Guangting, W. Zongmin. (1996). Numerical simulation study of fracture of concrete materials using random aggregate model. Journal of Tsinghua University(Science and Technology

    [26] LSTC. 2007.LS-DYNAKeywordUser'sManual(Version971), Livermore, CA: LivermoreSoftware Technology Corporation (LSTC)

    [27] M. Empelmann, M. Teutsch, G. Steven, (2008), Improvement of the post fracture behaviour of UHPC by fibres, Proceedings of the Second International Symposium on Ultra High Performance Concrete (UHPC ’08), p. 177, Kassel, Germany

    [28] M.C. Nataraja, N. Dhang, A.P. Gupta. (1999). Stress–strain curves for steel-fber reinforced concrete under compression. Cement & Concrete Composites 21 383–390

    [29] M. Greenberger. (1961). An A Priori Determination of Serial Correlation in Computer Generated Random Numbers. American Mathematical Society

    [30] M. Ipek, K. Yilmaz, M. Sumer, M. Saribiyik. (2010). Effect of pre-setting pressure applied to mechanical behaviours of reactive powder concrete during setting phase. Construction and Building Materials 25 61–68

    [31] P. Richard, M.H. Cheyrezy. (1994). Reactive powder concretes with high ductility and 200–800 MPa compressive strength. ACI Special Publication, 144, pp. 507–518 SP 144-24

    [32] P. C. Aïtcin. (2004). High Performance Concrete. Londen:E&FN Spon
    [33] Q. Fang, J. Zhang. (2013). Three-dimensional modelling of steel fiber reinforced concrete material under intense dynamic loading. Construction and Building Materials 44 118–132

    [34] S. Vrech, G. Etse, G. Meschke, A. Caggiano, E. Martinelli. (2010). Meso- and Macroscopic Models for Fiber-Reinforced Concrete. Computational modelling of concrete structures, CRC Press, Rohrmoos/Schladming, Austria, pp. 241–250

    [35] S. Caijun (2008). High-performance construction materials: science and application. World Scientific, Engineering Materials for Technological Needs

    [36] S.T. Kang, J.K. Kim. (2010). The relation between fiber orientation and tensile behavior in an Ultra High Performance Fiber Reinforced Cementitious Composites (UHPFRCC), Cement and Concrete Research 41 1001–1014

    [37] S.T. Kang, Y. Lee, Y.D. Park, J.K. Kim. (2009). Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Composite Structures 92 61–71

    [38] T. Abu-Lebdeh, S. Hamoush, W. Heard, B. Zornig. (2010). Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites. Construction and Building Materials 25 39–46

    [39] Tue NV, Henze S., (2008), Determination of the distribution and orientation of fibres in steel fibre reinforced UHPC by photographic method, Proceedings of 2nd international symposium on ultra high performance concrete. p. 505–12

    [40] X.Z. Lu, L.P.Ye, J.G. Teng, J.J. Jiang. (2004). Meso-scale finite element model for FRP sheets/plates bonded to concrete. Engineering Structures 27 564–575

    [41] Y. Jiahuan, L. Qiongyang, (2008). Meso-scale variable engagement model for single fiber reinforced concrete under uniaxial tension. Shenyang Jianzhu University, Shengyang 110168, China

    [42] Z. P. Bazant, M.R. Tabbara. (1990). Random particle model for fracture of aggregate or fiber composites. J. Eng. Mech., 116(8): 1686–1705

    [43] Z. Song. (2013). Computational mesoscale modeling of concrete material under high strain rate loading. University of Edinburgh, UK

    [44] Z. L. Wang, Y. S. Liu, R. F. Shen. (2007). Stress–strain relationship of steel fiber-reinforced concrete under dynamic compression. Construction and Building Materials 22 811–819

    [45] Z. Xia, Y. Chen, F. Ellyin. (2000). A meso/micro-mechanical model for damage progression in glass-fber/epoxy cross-ply laminates by fnite-element analysis. Composites Science and Technology 60 1171–1179

    [46] 冯乃谦, (2009), 高性能混凝土与超高性能混凝土的发展和应用, 施工技术, 第38卷第4期

    [47] 马怀发, 陈厚群, 黎保琨, (2004), 混凝土细观力学研究进展及评述, 中国水利水电科学研究院学报, 第2 卷第2 期

    [48] 程书怀, 任志刚, 余细东, 付应兵, (2015), 钢纤维混凝土细观二维建模与数值研究, 武汉理工大学学报, 第37卷第3期

    [49] 王春来,徐必根,李庶林,唐海燕, (2006), 单轴受压状态下钢纤维混凝土损伤本构模型研究, 岩土力学, 第27 卷第1期

    [50] 时党勇, 张庆明, 付跃升, 夏长富, (2010), 内爆炸条件下钢筋混凝土表面鼓包的试验观测和数值分析, 兵工学报, 第3l卷第4期

    [51] 赖建中, 孙 伟, 张云升, 金祖权, (2007), 生态型超高性能混凝土的弯曲行为研究, 武汉理工大学学报, 第29卷 第3期

    [52] 王青春, 范子杰, (2003), 利用Ls-Dyna计算结构准静态压溃的改进方法, 力学与实践, 第25卷

    [53] 陈宝春, 季 韬, 黄卿维, 吴怀中, 丁庆军 ,詹颖雯, (2014), 超高性能混凝土研究综述, 建筑科学与工程学报, 第31卷第3期

    [54] 杨剑, 方志, (2009), 超高性能混凝土梁正截面承载力, 中国铁道科学, 第30卷第2期

    [55] 黄靓, 徐慎春, 赵永娇, 苏宇, 陈昉建, (2015),超高性能钢纤维混凝土抗压性能试验研究及其数值模拟, 第24届全国结构工程学术会议论文集(Ⅰ-384~387)

    [56] 楊麒,(2015), 鋼纖維與超高性能混凝土間拉拔行為與界面應力模擬分析, 碩士, 土木工程學系碩博士班, 國立成功大學

    [57] 蘇峰堅, (2004), 鋼管混凝土柱受純彎矩行為之數值模擬, 碩士, 土木工程學系碩博士班, 國立成功大學

    [58] http://www.bjtgt.com/newsview.aspx?classid=2&newsid=145

    [59] http://edouardlin75.pixnet.net/blog/post/112491322-%E3%80%902.14%E3%80%91marseille,-la-table-du-fort

    [60] https://commons.wikimedia.org/wiki/File:Stress_Strain_Ductile_Material.pdf

    [61] http://slideplayer.com/slide/5058482/

    無法下載圖示 校內:2021-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE