| 研究生: |
陳威昇 Chen, Wei-Sheng |
|---|---|
| 論文名稱: |
氮化矽磊晶薄膜表面之掃描穿隧能譜研究 Scanning Tunneling Spectroscopic Study of Epitaxial Silicon Nitride Surface |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 掃描穿隧顯微術 、掃描穿隧能譜 、超薄氮化矽 、氮化 |
| 外文關鍵詞: | RF-Plasma, STM, STS |
| 相關次數: | 點閱:84 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要透過即時量測掃描穿隧能譜,研究單晶β-Si3N4薄膜在不同氮電漿源的氮化條件下的表面電子結構。我們可以藉由比較理論計算的穿隧電流去決定出超薄單晶氮化矽薄膜的能隙大小與各種成長條件下的表面態。氮電漿源在低溫氮化,將會形成非晶的氮化矽薄膜,而從穿隧能譜的結果可以看到價帶極大值偏移的現象,而可能造成的原因是受到N2p軌域主導整個價帶邊緣的影響。隨著增加氮化溫度與退火溫度的條件下,由於消除大量的缺陷態,我們成功地改善單晶β-Si3N4薄膜的品質。從能譜結果讓我們了解在掃描穿隧顯微術與能譜上的穿隧電流來源以及決定出β-Si3N4/Si(111)異質接面的價帶不連續值。
The electronic structures of crystalline β-Si3N4 formed in different plasma nitridation conditions were in situ investigated using scanning tunneling spectroscopy (STS). Comparing with the theoretical computation of tunneling current, the band gap energy and various surface states of β-Si3N4 ultra-thin film can be determined. On the non-crystalline Si3N4 thin film formed by low-temperature plasma nitridation, the spectroscopic results show the evidence of valence band maximum (VBM) shifting due to the N2p dominant valence band edge. With increasing the nitridation and post annealing temperature, we show the crystalline quality of β-Si3N4 can be improved due to the elimination of defect states in the tunneling spectra. These spectroscopic results allow us to understand origins of the tunnel current in scanning tunneling microscopy and spectroscopy experiments on these surfaces as well as the determination of β-Si3N4/Si(111) band offset.
1. G. Binning, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett . 50, 2 (1983).
2. K.Pandey, Phys. Rev. Lett. 47, 1913 (1981)
3. R. S. Becker, Golovchenko, D. R. Hamann and B. Swartzentruber, Phys. Rev. Lett. 55, 2032 (1985)
4. Robertson, Rep. Prog. Phys. 69, 327,(2006)
5. A. Y. Liu and M. L. Cohen, Phys. Rev. B 41, 10 727 (1990)
6. Y.-N. Xu and W. Y. Ching, Phys. Rev. B 51, 17 379 (1995).
7. A. J. van Bommel and E. Meyer, Surf. Sci. 8, 381 (1967)
8. E. Bauer et al., Phys. Rev. B 51, 17 891 (1995)
9. X.-S. Wang et al., Phys. Rev. B 60, R2146 (1999)
10. M. Nishijima et al., Surf. Sci. 137, 473 (1984)
11. B. Röttger, R. Kliese, and H. Neddermeyer, J. Vac. Sci. Technol. B 14, 1051 (1996)
12. M. D. Wiggins, R.J. Baird, and P. Wynblatt, J. Vac. Sci. Technol. 18, 965 (1981);Ph. Avouris and R. Wolkow, Phys. Rev. B 39, 5091 (1989)
13. Y. Morita and H. Tokumoto, Surf. Sci. 443, L1037 (1999)
14. A. G. Schrott and S. C. Fain, Jr.,Surf. Sci.111, 39 (1981);123, 204 (1982)
15. J. S. Ha et al., Appl. Phys. A 66, S495 (1998)
16. K. Takkayanagi, Y. Tanishiro, M.Takahashi, and S. Takahashi, J. Vac. Sci. Technol. A 3, 1502 (1895)
17. Ph. Avouris and R. Wolkow, Phys.Rev B, 39, 5091(1989)
18.R. Losio, K. N. Altmann, and F. J. Himpsel, Phys. Rev B. 61, 10845 (2000)
19. F. J. Himpsel, Surf. Sci. Rep. 12, 1 (1990)
20. Xue-sen Wang, Guangjie Zhai, Jianshu Yang, and Nelson Cue, Phys. Rev B. 60, R2146 (1999)
21. H. Ahn, C.-L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, Phys. Rev. Lett. 86, 2818 (2001)
22. C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys. Rev B. 65, 045309 (2002)
23. J. Robertson, J. Appl. Phys. 54, 4490 (1983)
24. F. Bozso and Ph. Avouris, Phys. Rev. B. 38, 3937 (1988)
25. Yong-Nian Xu and W. Y. Ching, Phys. Rev. B. 51, 17379 (1995)
26. J. W. Kim and H. W. Yeom, Phys. Rev. B. 67, 035304 (2003)
27. G. L. Zhao and M. E. Bachlechner, Phys. Rev. B. 58, 1887 (1998)
28. M. Yang, R. Q. Wu, W. S. Deng, L. Shen, Z. D. Sha, Y. Q. Cai, Y. P. Feng, and S. J. Wang, J. Appl. Phys. 105, 024108 (2009)
29. L. Ivanova, S.Borisova, H.Eisele, M. Dähne, A.Laubsch and Ph. Ebert, Appl. Phys. Lett. 93, 192110 (2008)
30. H. Eisele, S. Borisova, L. Ivanova, and M. Dähne, Ph. Ebert, J. Vac. Sci. Technol. B. 28, C5G11 (2010)
31. R. M. Feenstra and Joseph A. Stroscio, J. Vac. Sci. Techno. B. 5, 923(1987)
32. N. D. Jäger, E. R. Weber, K. Urban, and Ph. Ebert, Phys. Rev. B. 67, 165327 (2003)
33. Ph. Ebert, S. Schaafhausen, A. Lenz, A. Sabitova, L. Ivanova, M. Dahne, Y-L.Hong, S.Gwo, and H. Eisele, Appl. Phys. Lett. 98, 062103 (2011).
34. M. Weimer, J. Kramar, and J. Baldeschwieler, Phys. Rev. B. 39, 5572 (1989)
35. W. Kaiser, L. Bell, M. Hecht, and F. Grunthaner, J. Vac. Sci. Technol. A. 6, 519(1988)
36. Dawn A. Bonnell,”Scanning Tunneling Microscopy and Spectroscopy Theory”, Techniques, and Applications, VCH publish (1993)
37. R.M. Feenstra, J.A. Stroscio, and A.P Fein, Surf. Sci. 181, 295 (1987)
38. 謝錦龍,《單晶氮化矽薄膜掃描穿隧能譜研究》碩士論文,國立清華大學物理系,民國88年。
39. J. Bono and R. H. Good, Jr., Surf. Sci. 175, 415 (1986)
40. J. G. Simmons, J. Appl. Phys. 34, 1793 (1963)
41. Shang-Yuan Ren and W. Y. Ching, Phys. Rev. B. 23, 5454(1981)
42. Yong-Nian Xu and W. Y. Ching, Phys. Rev. B. 51,17379 (1995)
43. Yee-Chia Yeo, Qiang Lu, Pushkar Ranade, Hideki Takeuchi, Kevin J. Yang, Igor Polishchuk, IEEE Electron Device Letter. 22, 227(2001)
44. M. Prietsch, A. Samsavar, and R. Ludeke , Phys. Rev. B. 43, 11850(1991)
45. R. M. Feenstra, J. Vac. Sci. Technol. B. 21, 2080 (2003)
46. R. I. G. Uhrberg, G. V. Hansson, J. M. Nicholls, and P. E. S. Persson, Phys. Rev. B. 31, 3805 (1985)
47. Hong-Mao Lee (李弘貿), Cheng-Tai Kuo (郭承泰), Hung-Wei Shiu (許紘瑋), Chia-Hao Chen (陳家浩) and Shangjr Gwo (果尚志), Appl. phys. Lett. 95, 222104 (2009)