簡易檢索 / 詳目顯示

研究生: 顏紹宇
Yen, Shao-Yu
論文名稱: 計算熱力學輔助先進航空材料設計開發:難冶多主元合金與高強度鋁合金
Computational thermodynamic-assisted design of novel aerospace materials: refractory multi-principal element alloys and high-strength aluminum alloys
指導教授: 林士剛
Lin, Shih-Kang
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 236
中文關鍵詞: 計算相圖第一原理計算熱力學模型耐火多主元合金7000系鋁合金
外文關鍵詞: CALPHAD, ab initio calculation, thermodynamic modelling, refractory multiprincipal element alloys, 7000 series aluminum-alloys
相關次數: 點閱:70下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 節能減碳,以至於淨零碳排,是目前和未來全球所面臨最為重要的議題。對於航太工業而言,化石燃料的大量消耗及其導致的溫室氣體排放亟需減少。提高引擎工作效率以及減輕航空載具的重量是為兩個主要的解決方案。根據卡諾循環,藉由提高引擎的工作溫度可以獲得更高的效率,從而降低燃料消耗。次世代超合金中大多會添加具有高熔點的耐火合金元素,以增強在高溫下的熱穩定性和機械性能。而耐火多主元合金是具有更高抗溫能力的新型材料,近十年來已引起了廣泛關注及研究。耐火高熵超合金是為耐火多主元合金的其中一分支,在合金設計上採納了傳統超合金的微結構特徵,由於其具有共格析出強化以及相對較低密度的特性,有望成為新穎高溫材料。另一方面,7000系列鋁合金具有高強度和低密度的優點,被廣泛應用於飛機和汽車的結構材料。本論文採用計算熱力學方法結合關鍵實驗輔助設計新型合金,其中包括(1)耐火合金系統的高溫相平衡實驗及第一原理計算輔助建立Mo-Nb-Re熱力學模型、(2)以關鍵高溫相平衡實驗重新檢視V-Zr平衡相圖、(3)探討Cu和Mn添加對AA7075中介穩析出相之熱穩定性影響,以及(4)高通量計算相圖方法輔助設計新型耐火高熵超合金。我們成功提出了Mo-Nb-Re系統的自洽熱力學模型、並以高溫相平衡實驗界定了具爭議性的bcc-(Zr)相邊界、也以半定量的熱分析方法量測AA7075中析出強化相的熱穩定性、同時成功設計並製備了第一個具有bcc/B2微觀結構的高強度低密度Al-Co-Cr-Mo-Ti耐火高熵超合金。藉由強大的計算軟體以及可靠的熱力學資料庫結合實驗驗證,我們成功示範計算熱力學輔助新型合金設計;對於在資料庫中缺乏熱力學描述的二元及三元系統,我們也建構了可靠的熱力學模型,為未來新型合金設計提供了堅實的基礎。

    Energy conservation and carbon reduction are important issues over the world for now and future. For aerospace industry, significant amount of consumption in fossil fuels and resulted emission of greenhouse gas should be reduced urgently. Increasing the efficiency of engines and reducing the weight of aircrafts are two major solutions. According to Carnot cycle, higher efficiency of the engine can be reached with higher operating temperature, thus reducing the fuel consumption. Refractory elements with high melting points are usually alloyed in the next-generation superalloys to enhance the thermal stability and mechanical properties at elevated temperatures. Refractory multi-principal element alloys (RMPEAs) are novel materials with much higher temperature capability, which have attracted intense attentions. Refractory high-entropy superalloys (RSAs), a branch of RMPEAs adopting the microstructural characteristics of superalloys, have potential to be the novel high-temperature materials due to the desirable combination of coherent precipitate-strengthening and relatively low density. On the other hand, 7000 series Al-alloys possess the advantages of high strength with low density, which are widely used as structural materials of aircrafts and automobiles. In this thesis, computational thermodynamics coupled with key experiments were employed to assist the design of novel alloys, including (1) high-temperature phase equilibria and ab initio-aided thermodynamic modelling of Mo-Nb-Re refractory systems, (2) re-visiting V-Zr systems with high-temperature phase equilibria experiments, (3) studying alloying effect of Cu and Mn on thermal stability of meta-stable precipitates in AA7075, and (4) high-throughput CALPHAD-assisted design of novel refractory high-entropy superalloys. A self-consistent thermodynamic description of the Mo-Nb-Re systems was proposed; the ambiguous phase boundary of bcc-(Zr) was experimentally assessed; thermal stability of the strengthening precipitate in AA7075 was semi-quantitatively determined with DSC-based thermal analysis; high-strength-low-density Al-Co-Cr-Mo-Ti alloys with desirable superalloy-like microstructure were successfully designed and fabricated, which is the first alloy to possess the microstructure featuring bcc matrix with dispersed B2 precipitates formed via a 2nd order phase transformation. We successfully demonstrated computational thermodynamic-assisted alloy design with powerful software and reliable databases coupled with experimental validations. We also constructed reliable thermodynamic modellings for those binary and ternary systems without descriptions in database, providing the solid foundation for the novel alloy design in the future.

    ABSTRACT i 摘要 iii 誌謝 iv CONTENTS v LIST OF TABLES x LIST OF FIGURES xiii CHAPTER I: INTRODUCTION 1 I.1 Background 1 CHAPTER II: LITERATURE REVIEW 7 II.1 Aerospace materials 7 II.1.1 7000 series Al-alloys 7 II.1.2 Ni-based superalloys 8 II.2 Novel alloys for high-temperature applications 11 II.2.1 Multi-principal element alloys 11 II.2.2 Refractory multi-principal element alloys 15 CHAPTER III: METHODOLOGIES 18 III.1 Calculation 18 III.1.1 Calculation of phase diagram (CALPHAD) [13] 18 III.1.2 CALPHAD modelling of thermodynamics 21 III.1.2.1 Solution phases 21 III.1.2.2 Intermetallic compounds 23 III.1.3 High-throughput CALPHAD method 28 III.1.4 Ab initio calculation [14] 31 III.2 Experimental 34 III.2.1 Alloy fabrication 34 III.2.2 Microstructural characterization 36 III.2.3 Chemical analysis 37 III.2.4 Thermal analysis 38 III.2.5 Mechanical testing 41 CHAPTER IV: PHASE EQUILIBRIA AND THERMODYNAMIC MODELLING OF THE MO-NB-RE TERNARY SYSTEM 42 IV.1 Literature review 42 IV.1.1 Mo-Re binary system 43 IV.1.2 Nb-Re binary system 44 IV.1.3 Mo-Nb binary system 45 IV.1.4 Mo-Nb-Re ternary system 46 IV.2 Results and discussion 47 IV.2.1 Ab initio calculation 47 IV.2.1.1 Solid solution phases 47 IV.2.1.2 Intermetallic compounds 53 IV.2.2 Experimental investigation 55 IV.2.3 CALPHAD thermodynamic optimization 59 IV.2.3.1 Mo-Re binary system 59 IV.2.3.2 Nb-Re binary system 66 IV.2.3.3 Mo-Nb binary system 68 IV.2.3.4 Mo-Nb-Re ternary system 70 IV.3 Summary 73 CHAPTER V: THERMODYNAMIC ASSESSMENT OF THE V-ZR AND V-ZR-O SYSTEMS 74 V.1 Literature review 74 V.1.1 Experimental phase diagram 75 V.1.2 Thermodynamic modelling 81 V.1.3 Ambiguous phase boundary of bcc-(Zr)-phase 84 V.1.4 Martensite α’-phase and metastable ω-phase 85 V.1.5 Effect of oxygen on the phase equilibria 89 V.2 Results and discussion 91 V.2.1 Effect of yttrium addition on the phase equilibria 93 V.2.1.1 Zr50 alloys 93 V.2.1.2 Zr70 alloys 103 V.2.2 Determining phase equilibria of the V-Zr-O systems 111 V.2.2.1 V-Zr-O ternary system 111 V.2.2.2 V-Zr binary system 115 V.3 Summary 118 CHAPTER VI: EFFECT OF CU AND MN-ADDITIONS ON THE THERMAL STABILITY OF η'-PHASE IN AA7075 120 VI.1 Literature review 120 VI.1.1 η'-phase 120 VI.1.2 Effect of Cu and Mn addition 124 VI.1.3 DSC analyses on peak-aged AA7075 127 VI.2 Results and discussion 131 VI.2.1 Evaluating phase formation and composition variation via CALPHAD calculations 131 VI.2.2 Evaluating thermal stability of η'-phase via DSC analyses 135 VI.2.2.1 Calibrations of temperature and sensitivity 135 VI.2.2.2 AA7075 137 VI.2.2.3 AA7075+Cu alloys 143 VI.2.2.4 AA7075+Mn alloys 150 VI.3 Summary 159 CHAPTER VII: HIGH-THROUGHPUT CALPHAD-ASSISTED DESIGN OF NOVEL REFRACTORY HIGH-ENTROPY SUPERALLOYS 161 VII.1 Literature review 161 VII.2 Results and discussion 164 VII.2.1 Alloy design 164 VII.2.2 As-cast and SHT’d conditions 166 VII.2.3 Aged conditions 172 VII.2.4 Microhardness test 174 VII.2.5 TEM/STEM analyses of the peak-aged alloys 176 VII.2.6 Effect of coherent precipitate-strengthening 180 VII.3 Summary 186 CHAPTER VIII: CONCLUSIONS 188 REFERENCES 189 APPENDICES 205 A. TDB and POP files of the Mo-Nb-Re ternary system 205

    [1] For a livable climate: Net-zero commitments must be backed by credible action, The United Nations. (2022) https://www.un.org/en/climatechange/net-zero-coalition
    [2] CO2 Emissions in 2022, International Energy Agency. (2023) https://www.iea.org/reports/co2-emissions-in-2022
    [3] Tracking Aviation, International Energy Agency. (2023) https://www.iea.org/energy-system/transport/aviation
    [4] Analysis: Aviation could consume a quarter of 1.5C carbon budget by 2050, Carbon Brief. (2016) https://www.carbonbrief.org/aviation-consume-quarter-carbon-budget/
    [5] N.E. Prasad, R.J. Wanhill, 2017, Aerospace materials and material technologies, Springer
    [6] R.C. Reed, 2008, The superalloys: fundamentals and applications, Cambridge university press
    [7] O.N. Senkov, S.V. Senkova, C. Woodward, D.B. Miracle, Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis, Acta Materialia 61(5) (2013) 1545-1557
    [8] O. Senkov, G. Wilks, D. Miracle, C. Chuang, P. Liaw, Refractory high-entropy alloys, Intermetallics 18(9) (2010) 1758-1765
    [9] O.N. Senkov, S. Gorsse, D.B. Miracle, High temperature strength of refractory complex concentrated alloys, Acta materialia 175 (2019) 394-405
    [10] D.B. Miracle, M.-H. Tsai, O.N. Senkov, V. Soni, R. Banerjee, Refractory high entropy superalloys (RSAs), Scripta Materialia 187 (2020) 445-452.
    [11] Advantages and Disadvantages of Different Metals in Aerospace, The Piping Mart. (2022) https://blog.thepipingmart.com/metals/advantages-and-disadvantages-of-different-metals-in-aerospace/
    [12] K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Materialia 62 (2014) 141-155
    [13] N. Saunders, A.P. Miodownik, 1998, CALPHAD (calculation of phase diagrams): a comprehensive guide, Elsevier
    [14] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Physical review B 54(16) (1996) 11169
    [15] J. Allison, D. Backman, L. Christodoulou, Integrated computational materials engineering: a new paradigm for the global materials profession, Jom 58 (2006) 25-27
    [16] W.Y. Wang, J. Li, W. Liu, Z.-K. Liu, Integrated computational materials engineering for advanced materials: A brief review, Computational Materials Science 158 (2019) 42-48
    [17] U.R. Kattner, The Calphad method and its role in material and process development, Tecnologia em metalurgia, materiais e mineracao 13(1) (2016) 3
    [18] W. Cao, S.-L. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, W. Oates, PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation, Calphad 33(2) (2009) 328-342.
    [19] A.P. Mouritz, 2012, Introduction to aerospace materials, Elsevier
    [20] X. Zhang, Y. Chen, J. Hu, Recent advances in the development of aerospace materials, Progress in Aerospace Sciences 97 (2018) 22-34
    [21] T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys, Materials & Design (1980-2015) 56 (2014) 862-871
    [22] A. Merati, Materials replacement for aging aircraft, Corrosion Fatigue and Environmentally Assisted Cracking in Aging Military Vehicles (2011) 24.1-24.22
    [23] R. Schafrik, R. Sprague, Saga of gas turbine materials: part II of this four-part series on gas turbine materials development covers vacuum arc remelting, early superalloys, and titanium processing, Advanced materials & processes 162(4) (2004) 27-31
    [24] H. Long, S. Mao, Y. Liu, Z. Zhang, X. Han, Microstructural and compositional design of Ni-based single crystalline superalloys―A review, Journal of Alloys and Compounds 743 (2018) 203-220
    [25] S. Makineni, B. Nithin, K. Chattopadhyay, A new tungsten-free γ–γ’Co–Al–Mo–Nb-based superalloy, Scripta Materialia 98 (2015) 36-39
    [26] J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, K. Ishida, Cobalt-base high-temperature alloys, Science 312(5770) (2006) 90-91
    [27] B. Bewlay, M. Jackson, P. Subramanian, J.-C. Zhao, A review of very-high-temperature Nb-silicide-based composites, Metallurgical and Materials Transactions A 34(10) (2003) 2043-2052
    [28] Y. Yamabe-Mitarai, Y. Ro, H. Harada, T. Maruko, Ir-base refractory superalloys for ultra-high temperatures, Metallurgical and Materials Transactions A 29(2) (1998) 537-549
    [29] X. Yu, Y. Yamabe-Mitarai, Y. Ro, H. Harada, Design of quaternary ir-Nb-Ni-Al refractory superalloys, Metallurgical and materials transactions A 31(1) (2000) 173-178
    [30] J. Zhang, H. Harada, Y. Ro, Y. Koizumi, T. Kobayashi, Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82, Acta materialia 56(13) (2008) 2975-2987
    [31] K. Kawagishi, A.-C. Yeh, T. Yokokawa, T. Kobayashi, Y. Koizumi, H. Harada, Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238, Superalloys 9 (2012) 189-195
    [32] G. Erickson, The development of the CMSX-11B and CMSX-11C alloys for industrial gas turbine application, Superalloys 1996 (1996) 45-52
    [33] B. Cantor, I. Chang, P. Knight, A. Vincent, Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering: A 375 (2004) 213-218.
    [34] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Advanced engineering materials 6(5) (2004) 299-303.
    [35] D. Miracle, Critical assessment 14: High entropy alloys and their development as structural materials, Materials Science and Technology 31(10) (2015) 1142-1147
    [36] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, S.-Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements, Metallurgical and Materials Transactions A 35(8) (2004) 2533-2536
    [37] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in materials science 61 (2014) 1-93
    [38] M.C. Gao, J.-W. Yeh, P.K. Liaw, Y. Zhang, High-entropy alloys, Cham: Springer International Publishing (2016)
    [39] Q. Wang, Z. Li, S. Pang, X. Li, C. Dong, P.K. Liaw, Coherent precipitation and strengthening in compositionally complex alloys: a review, Entropy 20(11) (2018) 878
    [40] Y. Ikeda, B. Grabowski, F. Körmann, Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys, Materials Characterization 147 (2019) 464-511
    [41] W. Li, D. Xie, D. Li, Y. Zhang, Y. Gao, P.K. Liaw, Mechanical behavior of high-entropy alloys, Progress in Materials Science 118 (2021) 100777
    [42] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
    [43] Y. Jien-Wei, Recent progress in high entropy alloys, Ann. Chim. Sci. Mat 31(6) (2006) 633-648.10.3166/acsm.31.633-648
    [44] Y. Zhao, J. Qiao, S. Ma, M. Gao, H. Yang, M. Chen, Y. Zhang, A hexagonal close-packed high-entropy alloy: The effect of entropy, Materials & Design 96 (2016) 10-15
    [45] M. Calvo-Dahlborg, S.G. Brown, Hume-Rothery for HEA classification and self-organizing map for phases and properties prediction, Journal of Alloys and Compounds 724 (2017) 353-364
    [46] G. Sheng, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Progress in Natural Science: Materials International 21(6) (2011) 433-446
    [47] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid‐solution phase formation rules for multi‐component alloys, Advanced engineering materials 10(6) (2008) 534-538
    [48] F. Zhang, C. Zhang, S.-L. Chen, J. Zhu, W.-S. Cao, U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations, Calphad 45 (2014) 1-10
    [49] Y. Ye, Q. Wang, J. Lu, C. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today 19(6) (2016) 349-362
    [50] H. Mao, H.-L. Chen, Q. Chen, TCHEA1: A thermodynamic database not limited for “high entropy” alloys, Journal of Phase Equilibria and Diffusion 38 (2017) 353-368
    [51] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications, Entropy 16(1) (2014) 494-525
    [52] H.-L. Chen, H. Mao, Q. Chen, Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips, Materials Chemistry and Physics 210 (2018) 279-290
    [53] C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Materials & Design 109 (2016) 425-433
    [54] C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design, Jom 64 (2012) 839-845
    [55] D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, D. Raabe, Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one, Acta Materialia 100 (2015) 90-97
    [56] M.C. Gao, B. Zhang, S. Guo, J. Qiao, J. Hawk, High-entropy alloys in hexagonal close-packed structure, Metallurgical and Materials Transactions A 47 (2016) 3322-3332
    [57] M.C. Gao, B. Zhang, S. Yang, S. Guo, Senary refractory high-entropy alloy HfNbTaTiVZr, Metallurgical and Materials Transactions A 47 (2016) 3333-3345
    [58] O.N. Senkov, G. Wilks, J. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706
    [59] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high entropy alloys—A review, Journal of materials research 33(19) (2018) 3092-3128
    [60] O.N. Senkov, D. Isheim, D.N. Seidman, A.L. Pilchak, Development of a refractory high entropy superalloy, Entropy 18(3) (2016) 102.
    [61] O. Senkov, J. Jensen, A. Pilchak, D. Miracle, H. Fraser, Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0. 5NbTa0. 5TiZr, Materials & Design 139 (2018) 498-511
    [62] Z.-K. Liu, First-principles calculations and CALPHAD modeling of thermodynamics, Journal of phase equilibria and diffusion 30 (2009) 517-534
    [63] M. Hillert, The compound energy formalism, Journal of Alloys and Compounds 320(2) (2001) 161-176
    [64] S.-L. Chen, S. Daniel, F. Zhang, Y. Chang, X.-Y. Yan, F.-Y. Xie, R. Schmid-Fetzer, W. Oates, The PANDAT software package and its applications, Calphad 26(2) (2002) 175-188
    [65] A.T. Dinsdale, SGTE data for pure elements, Calphad 15(4) (1991) 317-425
    [66] F. Spooner, C. Wilson, Ordering in binary σ phases, Acta Crystallographica 17(12) (1964) 1533-1538
    [67] J.-M. Joubert, Crystal chemistry and Calphad modeling of the σ phase, Progress in Materials Science 53(3) (2008) 528-583
    [68] I. Ansara, T. Chart, A.F. Guillermet, F. Hayes, U. Kattner, D. Pettifor, N. Saunders, K. Zeng, Thermodynamic Modelling of Solutions and Alloys, Calphad 21(2) (1997) 171-218
    [69] Y. Yang, C. Zhang, S. Chen, D. Morgan, Y.A. Chang, First-principles calculation aided thermodynamic modeling of the Mo–Re system, Intermetallics 18(4) (2010) 574-581
    [70] P. Mao, K. Han, Y. Xin, Thermodynamic assessment of the Mo–Re binary system, Journal of alloys and compounds 464(1-2) (2008) 190-196
    [71] X.L. Liu, C.Z. Hargather, Z.-K. Liu, First-principles aided thermodynamic modeling of the Nb–Re system, Calphad 41 (2013) 119-127
    [72] R. Mathieu, N. Dupin, J.-C. Crivello, K. Yaqoob, A. Breidi, J.-M. Fiorani, N. David, J.-M. Joubert, CALPHAD description of the Mo–Re system focused on the sigma phase modeling, Calphad 43 (2013) 18-31
    [73] R. Steadman, P. Nuttall, χ phase in a niobium–rhenium alloy, Acta Crystallographica 17(1) (1964) 62-63
    [74] J.-M. Joubert, M. Phejar, Crystal chemistry and Calphad modelling of the χ phase, Progress in materials science 54(7) (2009) 945-980
    [75] S. Farzadfar, M. Levesque, M. Phejar, J.-M. Joubert, Thermodynamic assessment of the Molybdenum–Rhenium system, Calphad 33(3) (2009) 502-510
    [76] G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Physical review b 59(3) (1999) 1758
    [77] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Physical review letters 77(18) (1996) 3865
    [78] P.E. Blöchl, Projector augmented-wave method, Physical review B 50(24) (1994) 17953
    [79] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Physical review B 13(12) (1976) 5188
    [80] A. Zunger, S.-H. Wei, L. Ferreira, J.E. Bernard, Special quasirandom structures, Physical Review Letters 65(3) (1990) 353
    [81] C. Jiang, C. Wolverton, J. Sofo, L.-Q. Chen, Z.-K. Liu, First-principles study of binary bcc alloys using special quasirandom structures, Physical Review B 69(21) (2004) 214202
    [82] D. Shin, R. Arróyave, Z.-K. Liu, A. Van de Walle, Thermodynamic properties of binary hcp solution phases from special quasirandom structures, Physical Review B 74(2) (2006) 024204
    [83] C. Jiang, First-principles study of ternary bcc alloys using special quasi-random structures, Acta materialia 57(16) (2009) 4716-4726
    [84] A. Van De Walle, M. Asta, G. Ceder, The alloy theoretic automated toolkit: A user guide, Calphad 26(4) (2002) 539-553
    [85] A. Van de Walle, P. Tiwary, M. De Jong, D. Olmsted, M. Asta, A. Dick, D. Shin, Y. Wang, L.-Q. Chen, Z.-K. Liu, Efficient stochastic generation of special quasirandom structures, Calphad 42 (2013) 13-18
    [86] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL materials 1(1) (2013)
    [87] C. Wolverton, X.-Y. Yan, R. Vijayaraghavan, V. Ozoliņš, Incorporating first-principles energetics in computational thermodynamics approaches, Acta materialia 50(9) (2002) 2187-2197
    [88] K. Ozturk, Y. Zhong, L.-Q. Chen, Z.-K. Liu, J.O. Sofo, C. Wolverton, Linking first-principles energetics to CALPHAD: An application to thermodynamic modeling of the Al-Ca binary system, Metallurgical and Materials Transactions A 36 (2005) 5-13
    [89] R. Arroyave, Z. Liu, Thermodynamic modelling of the Zn–Zr system, Calphad 30(1) (2006) 1-13
    [90] NIST Chemistry WebBook, SRD 69, https://webbook.nist.gov/cgi/cbook.cgi?ID=C7429905&Units
    [91] D. Dragulin, M. Ruther, Specific heat capacity of aluminium and aluminium alloys, Heat Treat 3 (2018) 81-85
    [92] R.D. Fraser, E. Suzuki, Resolution of overlapping absorption bands by least squares procedures, Analytical Chemistry 38(12) (1966) 1770-1773
    [93] R.D. Fraser, E. Suzuki, Resolution of overlapping bands. Functions for simulating band shapes, Analytical chemistry 41(1) (1969) 37-39
    [94] H.E. Kissinger, Differential thermal analysis, J. Res. Natl. Bur. Stand 57(4) (1956) 217
    [95] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Analytical chemistry 29(11) (1957) 1702-1706
    [96] W. Xiong, Y. Du, Y. Liu, B. Huang, H. Xu, H. Chen, Z. Pan, Thermodynamic assessment of the Mo–Nb–Ta system, Calphad 28(2) (2004) 133-140
    [97] D. Shin, C. Wolverton, First-principles density functional calculations for Mg alloys: A tool to aid in alloy development, Scripta Materialia 63(7) (2010) 680-685
    [98] J. Dickinson, L. Richardson, Constitution of rhenium–molybdenum alloys, Trans Am Soc Met 72 (1958) 9
    [99] A. Knapton, The molybdenum-rhenium system, J. Inst. Metals 87 (1958)
    [100] E. Savitskii, M. Tylkina, K. Povarova, Phase diagram of the rhenium–molybdenum system, Zh Neorg Khim 4 (1959) 424-34
    [101] L. Brewer, R. Lamoreaux, R. Ferro, R. Marazza, K. Girgis, Molybdenum: Physico-Chemical Properties oj Its Compounds and Alloys, (1980)
    [102] J. Conway, R. Hein, R. Fincel Jr, A. Losekamp, Enthalpy and Thermal Expansion of Several Refractory Metals to 2500° C, (1964)
    [103] H. Okamoto, Mo-Re (Molybdenum-Rhenium), Journal of phase equilibria and diffusion 31(6) (2010) 580
    [104] B. Giessen, R. Nordheim, N. Grant, The Constitution Diagram Niobium (Columbium)-Rhenium, Trans. Met. Soc. AIME 221 (1961)
    [105] P. Levesque, W. Bekebrede, H. Brown, The constitution of rhenium-columbium alloys, Trans. Am. Soc. Metals 53 (1961)
    [106] A. Knapton, The niobium-rhenium system, Journal of the Less Common Metals 1(6) (1959) 480-486
    [107] T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak, ASM International, Binary alloy phase diagrams, Materials Park: ASM International (1990)
    [108] R.S.P.T.I.M.I.A.A.B. I.I. Kornilov, 2 (1957), pp. 149-153,
    [109] A.F.M.L. E. Rudy, Report No. AFML-TR-65-2,Part V, Wright Patterson AFB, OH, 1969.,
    [110] R.S.P. L.I. Pryakhina, V.G. Grmova, K.P. Myasnikova, O.V. Ozhimkova, Tsvet. Metal. Splavov, Nauka, (1972) 27-31.,
    [111] Y.A. Kocherzhinskij, V. Vasilenko, Melting diagram of molybdenum-niobium system, Doklady Akademii Nauk SSSR 257(2) (1981) 371-373
    [112] S. Singhal, W. Worrell, A high-temperature thermodynamic investigation of the nb-mo system, Metallurgical Transactions 4(4) (1973) 1125-1128
    [113] E.S. E. Tsagaraeva, M. Raevskaya, I. Sokolova, S. Kabanov, Isothermal cross-section of the molybdenum rhenium niobium system at 1700-degree-C, in, Moscow State Univ Leninskie Gory, Moscow, Russia, 1985, pp. 424-425.,
    [114] E.K.S. E.A. Smol'yaninova, V.I. Tyavlovskii, Phase Equilibrium Diagram of Ternary Rhenium System with Vanadium, Niobium and Molybdenum, Izvestiya Akademii Nauk SSSR. Metally, (1987) 207-209.,
    [115] Y.V. Balykova, S. Nikolaev, E.Y. Kerimov, E. Slyusarenko, Isothermal cross-section of phase equilibria diagram of Cr-Nb-Re system at 1375 K, Moscow University Chemistry Bulletin 67(6) (2012) 265-269
    [116] V. Soni, B. Gwalani, T. Alam, S. Dasari, Y. Zheng, O.N. Senkov, D. Miracle, R. Banerjee, Phase inversion in a two-phase, BCC+ B2, refractory high entropy alloy, Acta Materialia 185 (2020) 89-97
    [117] V. Soni, B. Gwalani, O.N. Senkov, B. Viswanathan, T. Alam, D.B. Miracle, R. Banerjee, Phase stability as a function of temperature in a refractory high-entropy alloy, Journal of Materials Research 33(19) (2018) 3235-3246
    [118] A. Carlson, Standard cross-section data, Progress in Nuclear Energy 13(2-3) (1984) 79-127
    [119] X. Yang, T. Zhang, R. Hu, J. Li, X. Xue, H. Fu, Microstructure and hydrogenation thermokinetics of ZrTi0. 2V1. 8 alloy, International journal of hydrogen energy 35(21) (2010) 11981-11985
    [120] J. Pollock, R. Shull, H. Gatos, Superconducting characteristics of zirconium—vanadium alloys, physica status solidi (a) 2(2) (1970) 251-256
    [121] H. Okamoto, Supplemental literature review of binary phase diagrams: Ag-yb, al-co, al-i, co-cr, cs-te, in-sr, mg-tl, mn-pd, mo-o, mo-re, ni-os, and v-zr, Journal of Phase Equilibria and Diffusion 37(6) (2016) 726-737
    [122] R. Arroyave, L. Kaufman, T.W. Eagar, Thermodynamic modeling of the Zr O system, Calphad 26(1) (2002) 95-118
    [123] P.-Y. Chevalier, E. Fischer, B. Cheynet, Progress in the thermodynamic modelling of the O–U–Zr ternary system, Calphad 28(1) (2004) 15-40
    [124] C. Wang, M. Zinkevich, F. Aldinger, On the thermodynamic modeling of the Zr–O system, Calphad 28(3) (2004) 281-292
    [125] R. Tewari, D. Srivastava, G. Dey, J. Chakravarty, S. Banerjee, Microstructural evolution in zirconium based alloys, Journal of Nuclear Materials 383(1-2) (2008) 153-171
    [126] W. Rostoker, A. Yamamoto, A survey of vanadium binary systems, Transactions of the American Society for Metals 46 (1954) 1136-1167
    [127] J.T. Williams, Vanadium-zirconium alloy system, JOM 7 (1955) 345-350
    [128] E. Rudy, Ternary phase equilibria in transition metal-boron-carbon-silicon systems. part 5. compendium of phase diagram data, (1969)
    [129] J.F. Smith, Phase diagrams of binary vanadium alloys, ASM International, Metals Park, Ohio 44073, USA, 1989. 329 (1989)
    [130] J. Cui, C. Guo, L. Zou, C. Li, Z. Du, Thermodynamic modeling of the V–Zr system supported by key experiments, Calphad 53 (2016) 122-129
    [131] J. Korb and K. Hack, GTT, System V-Zr, Germany, 1995, in Cost 507, Definition of Thermochemical and Thermophysical Properties to Provide a Database for the Development of New Light Alloys, Thermodynamical Database for Light Metal Al?loys, I. Ansara, A.T. Dinsdale, and M.H. Rand, Ed., 2 (1998) 303-304
    [132] C. Servant, Thermodynamic assessments of the phase diagrams of the hafnium-vanadium and vanadium-zirconium systems, Journal of phase equilibria and diffusion 26(1) (2005) 39-49
    [133] X.-S. Zhao, G.-H. Yuan, M.-Y. Yao, Q. Yue, J.-Y. Shen, First-principles calculations and thermodynamic modeling of the V–Zr system, Calphad 36 (2012) 163-168
    [134] J. Štrof, J. Pavlů, U.D. Wdowik, J. Buršík, M. Šob, J. Vřešťál, Laves phases in the V–Zr system below room temperature: Stability analysis using ab initio results and phase diagram, Calphad 44 (2014) 62-69
    [135] Ö. Rapp, G. Benediktsson, Latent heat of structural transformations in ZrV2 and HfV2, Physics Letters A 74(6) (1979) 449-452
    [136] D. Moncton, Lattice transformation in the superconductivity ZrV2 by neutron diffraction, Solid State Communications 13(11) (1973) 1779-1782
    [137] H. Keiber, C. Geibel, B. Renker, H. Rietschel, H. Schmidt, H. Wühl, G. Stewart, Phase instability, spin fluctuations, and superconductivity in the C 15 compound V 2 Zr, Physical Review B 30(5) (1984) 2542
    [138] C. Geibel, W. Goldacker, H. Keiber, V. Oestreich, H. Rietschel, H. Wühl, Phase transitions, electronic properties, and superconductivity in the system V 2 Zr H x, Physical Review B 30(11) (1984) 6363
    [139] S. Banerjee, P. Mukhopadhyay, 2010, Phase transformations: examples from titanium and zirconium alloys, Elsevier
    [140] B. Hatt, J. Roberts, G. Williams, Occurrence of the meta-stable omega phase in zirconium alloys, Nature 180(4599) (1957) 1406-1406
    [141] B. Hatt, J. Roberts, The ω-phase in zirconium base alloys, Acta Metallurgica 8(8) (1960) 575-584
    [142] A. Dobromyslov, N. Taluts, N. Kazantseva, Metastable eutectoid decomposition in Zr-V alloys, Scripta metallurgica et materialia 32(5) (1995) 719-724
    [143] G. Lindwall, P. Wang, U.R. Kattner, C.E. Campbell, The effect of oxygen on phase equilibria in the Ti-V system: Impacts on the AM processing of Ti alloys, JOM 70 (2018) 1692-1705
    [144] H. Wriedt, The OV (oxygen-vanadium) system, Bulletin of Alloy Phase Diagrams 10(3) (1989) 271-277
    [145] Z. Cao, S. Li, W. Xie, G. Du, Z. Qiao, Critical evaluation and thermodynamic optimization of the V–O system, Calphad 51 (2015) 241-251
    [146] Y. Yang, H. Mao, M. Selleby, Thermodynamic assessment of the V–O system, Calphad 51 (2015) 144-160
    [147] B. Puchala, A. Van der Ven, Thermodynamics of the Zr-O system from first-principles calculations, Physical review B 88(9) (2013) 094108
    [148] P. Liang, N. Dupin, S. Fries, H. Seifert, I. Ansara, H. Lukas, F. Aldinger, Thermodynamic assessment of the Zr–O binary system, International Journal of Materials Research 92(7) (2022) 747-756
    [149] W. Fuming, H. Flower, Phase separation reactions in Ti–50V alloys, Materials science and technology 5(12) (1989) 1172-1177
    [150] X. Li, V. Hansen, J. Gjønnes, L. Wallenberg, HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys, Acta materialia 47(9) (1999) 2651-2659
    [151] L. Berg, J. Gjønnes, V. Hansen, X. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, L. Wallenberg, GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta materialia 49(17) (2001) 3443-3451
    [152] C. Wolverton, Crystal structure and stability of complex precipitate phases in Al–Cu–Mg–(Si) and Al–Zn–Mg alloys, Acta Materialia 49(16) (2001) 3129-3142
    [153] G. Sha, A. Cerezo, Characterization of precipitates in an aged 7xxx series Al alloy, Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 36(5‐6) (2004) 564-568
    [154] G. Sha, A. Cerezo, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Materialia 52(15) (2004) 4503-4516
    [155] A. Kverneland, V. Hansen, R. Vincent, K. Gjønnes, J. Gjønnes, Structure analysis of embedded nano-sized particles by precession electron diffraction. η′-precipitate in an Al–Zn–Mg alloy as example, Ultramicroscopy 106(6) (2006) 492-502
    [156] J. Liu, J. Chen, D. Yuan, C. Wu, J. Zhu, Z. Cheng, Fine precipitation scenarios of AlZnMg (Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part I: Structure determination of the precipitates in AlZnMg (Cu) alloys, Materials Characterization 99 (2015) 277-286
    [157] J. Liu, J. Chen, Z. Liu, C. Wu, Fine precipitation scenarios of AlZnMg (Cu) alloys revealed by advanced atomic-resolution electron microscopy study Part II: Fine precipitation scenarios in AlZnMg (Cu) alloys, Materials Characterization 99 (2015) 142-149
    [158] T.-F. Chung, Y.-L. Yang, B.-M. Huang, Z. Shi, J. Lin, T. Ohmura, J.-R. Yang, Transmission electron microscopy investigation of separated nucleation and in-situ nucleation in AA7050 aluminium alloy, Acta Materialia 149 (2018) 377-387
    [159] F. Cao, J. Zheng, Y. Jiang, B. Chen, Y. Wang, T. Hu, Experimental and DFT characterization of η′ nano-phase and its interfaces in AlZnMgCu alloys, Acta Materialia 164 (2019) 207-219
    [160] J. Auld, C. SM, THE STRUCTURE OF THE METASTABLE ETA'PHASE IN ALUMINIUM-ZINC-MAGNESIUM ALLOYS, (1974)
    [161] J. Gjønnes, C.J. Simensen, An electron microscope investigation of the microstructure in an aluminium-zinc-magnesium alloy, Acta Metallurgica 18(8) (1970) 881-890
    [162] M. Liu, B. Klobes, K. Maier, On the age-hardening of an Al–Zn–Mg–Cu alloy: a vacancy perspective, Scripta Materialia 64(1) (2011) 21-24
    [163] T. Engdahl, V. Hansen, P. Warren, K. Stiller, Investigation of fine scale precipitates in Al–Zn–Mg alloys after various heat treatments, Materials Science and Engineering: A 327(1) (2002) 59-64
    [164] A. Deschamps, Y. Bréchet, F. Livet, Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy, Materials Science and Technology 15(9) (1999) 993-1000
    [165] A. Bryant, THE EFFECT OF COMPOSITION UPON THE QUENCH- SENSITIVITY OF SOME AL-ZN-MG ALLOYS, INST METALS J 94(3) (1966) 94-99
    [166] T. Sanders, E. Starke, The relationship of microstructure to monotonic and cyclic straining of two age hardening aluminum alloys, Metallurgical Transactions A 7(9) (1976) 1407-1418
    [167] P. Swann, W. ARC, MECHANISMS OF ENVIRONAAENT SENSITIVE CRACKING OF MATERIALS, (1977)
    [168] F.-S. Lin, E. Starke Jr, The effect of copper content and degree of recrystallization on the fatigue resistance of 7XXX type aluminum alloys I. Low cycle corrosion fatigue, Materials Science and Engineering 39(1) (1979) 27-41
    [169] N. Chinh, J. Lendvai, D. Ping, K. Hono, The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys, Journal of Alloys and Compounds 378(1-2) (2004) 52-60
    [170] L. Hadjadj, R. Amira, The effect of Cu addition on the precipitation and redissolution in Al–Zn–Mg alloy by the differential dilatometry, Journal of Alloys and Compounds 484(1-2) (2009) 891-895
    [171] Y.-Y. Li, L. Kovarik, P.J. Phillips, Y.-F. Hsu, W.-H. Wang, M.J. Mills, High-resolution characterization of the precipitation behavior of an Al–Zn–Mg–Cu alloy, Philosophical Magazine Letters 92(4) (2012) 166-178
    [172] X. Li, J. Yu, Modeling the effects of Cu variations on the precipitated phases and properties of Al-Zn-Mg-Cu alloys, Journal of materials engineering and performance 22(10) (2013) 2970-2981
    [173] Y.-g. Liao, X.-q. Han, M.-x. Zeng, M. Jin, Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy, Materials & Design 66 (2015) 581-586
    [174] S.W. Nam, D.H. Lee, The effect of Mn on the mechanical behavior of Al alloys, Metals and materials 6(1) (2000) 13
    [175] Y. Morimoto, H. Adachi, K. Osamura, J. Kusui, S. Okaniwa, Effect of Mn intermetallic particle on microstructure development of P/M Al-Zn-Mg-Cu-Mn alloy, Materials science forum 519 (2006) 1623-1628
    [176] Z. Liu, X. Xu, B. Zhang, H. Chen, T. Wang, J. Zhang, K. Zhang, J. Zhang, F. Yang, Effect of Mn element on microstructure and properties of 7000 series ultra high strength rolled aluminum alloy, Materials Research Express 6(7) (2019) 076562
    [177] D. Richard, P.N. Adler, Calorimetric studies of 7000 series aluminum alloys: I. Matrix precipitate characterization of 7075, Metall. Trans. A 8(7) (1977) 1177-1183
    [178] D. Lloyd, M. Chaturvedi, A calorimetric study of aluminium alloy AA-7075, Journal of Materials Science 17(6) (1982) 1819-1824
    [179] J.M. Papazian, Calorimetric studies of precipitation and dissolution kinetics in aluminum alloys 2219 and 7075, Metall. Trans. A 13(5) (1982) 761-769
    [180] A. Baldantoni, On the microstructural changes during the retrogression and re-aging of 7075 type aluminium alloys, Materials Science and Engineering 72(1) (1985) L5-L8
    [181] J. Papazian, Differential scanning calorimetry evaluation of retrogressed and re-aged microstructures in aluminum alloy 7075, Materials Science and Engineering 79(1) (1986) 97-104
    [182] J.K. Park, A. Ardell, Correlation between microstructure and calorimetric behavior of aluminum alloy 7075 and Al Zn Mg alloys in various tempers, Materials Science and Engineering: A 114 (1989) 197-203
    [183] J.K. Park, A. Ardell, Effect of retrogression and reaging treatments on the microstructure of Ai-7075-T651, Metallurgical and Materials Transactions A 15 (1984) 1531-1543
    [184] J.K. Park, A. Ardell, Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers, Metallurgical transactions A 14 (1983) 1957-1965
    [185] J.K. Park, A. Ardell, Precipitate microstructure of peak-aged 7075 Al, Scripta metallurgica 22(7) (1988) 1115-1119
    [186] C. Bartges, Evidence of [eta]'or ordered zone formation in aluminum alloy 7075 from differential scanning calorimetry.[Aluminium alloy 7075], Scripta Metallurgica et Materialia;(United States) 28(9) (1993)
    [187] W. Huo, L. Hou, Y. Zhang, J. Zhang, Warm formability and post-forming microstructure/property of high-strength AA 7075-T6 Al alloy, Materials Science and Engineering: A 675 (2016) 44-54
    [188] P. Zhou, Y. Song, L. Hua, J. Lin, J. Lu, Using novel strain aging kinetics models to determine the effect of solution temperature on critical strain of Al-Zn-Mg-Cu alloy, Journal of Alloys and Compounds 838 (2020) 155647
    [189] S. Naka, T. Khan, Designing novel multiconstituent inter me tallies: Contribution of modern alloy theory in developing engineered materials, Journal of phase equilibria 18(6) (1997) 635-649
    [190] O. Senkov, S. Senkova, C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Materialia 68 (2014) 214-228
    [191] O. Senkov, C. Woodward, D. Miracle, Microstructure and properties of aluminum-containing refractory high-entropy alloys, Jom 66(10) (2014) 2030-2042
    [192] V. Soni, O. Senkov, B. Gwalani, D. Miracle, R. Banerjee, Microstructural design for improving ductility of an initially brittle refractory high entropy alloy, Scientific reports 8(1) (2018) 1-10
    [193] V. Soni, O. Senkov, J.-P. Couzinie, Y. Zheng, B. Gwalani, R. Banerjee, Phase stability and microstructure evolution in a ductile refractory high entropy alloy Al10Nb15Ta5Ti30Zr40, Materialia 9 (2020) 100569
    [194] T. Whitfield, E. Pickering, L. Owen, C. Jones, H. Stone, N. Jones, The effect of Al on the formation and stability of a BCC–B2 microstructure in a refractory metal high entropy superalloy system, Materialia 13 (2020) 100858
    [195] S. Laube, S. Schellert, A.S. Tirunilai, D. Schliephake, B. Gorr, H.-J. Christ, A. Kauffmann, M. Heilmaier, Microstructure tailoring of Al-containing compositionally complex alloys by controlling the sequence of precipitation and ordering, Acta Materialia 218 (2021) 117217
    [196] T.E. Whitfield, E.J. Pickering, L.R. Owen, O.N. Senkov, D.B. Miracle, H.J. Stone, N.G. Jones, An assessment of the thermal stability of refractory high entropy superalloys, Journal of Alloys and Compounds 857 (2021) 157583
    [197] T.E. Whitfield, G.J. Wise, E.J. Pickering, H.J. Stone, N.G. Jones, An investigation of the miscibility gap controlling phase formation in refractory metal high entropy superalloys via the Ti-Nb-Zr constituent system, Metals 11(8) (2021) 1244
    [198] N. Yurchenko, E. Panina, D. Shaysultanov, S. Zherebtsov, N. Stepanov, Refractory high entropy alloy with ductile intermetallic B2 matrix/hard bcc particles and exceptional strain hardening capacity, Materialia 20 (2021) 101225
    [199] J.-P. Couzinié, M. Heczko, V. Mazánová, O.N. Senkov, M. Ghazisaeidi, R. Banerjee, M.J. Mills, High-temperature deformation mechanisms in a BCC+ B2 refractory complex concentrated alloy, Acta Materialia 233 (2022) 117995
    [200] P.S. Ocaño, S.G. Fries, I. Lopez-Galilea, R.D. Kamachali, J. Roik, L.A. Jácome, The AlMo0. 5NbTa0. 5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method, Materials & Design 217 (2022) 110593
    [201] E. Panina, N. Yurchenko, A. Tojibaev, M. Mishunin, S. Zherebtsov, N. Stepanov, Mechanical properties of (HfCo) 100− x (NbMo) x refractory high-entropy alloys with a dual-phase bcc-B2 structure, Journal of Alloys and Compounds 927 (2022) 167013
    [202] P. Kumar, S.J. Kim, Q. Yu, J. Ell, M. Zhang, Y. Yang, J.Y. Kim, H.-K. Park, A.M. Minor, E.S. Park, Compressive vs. tensile yield and fracture toughness behavior of a body-centered cubic refractory high-entropy superalloy Al0. 5Nb1. 25Ta1. 25TiZr at temperatures from ambient to 1200° C, Acta Materialia 245 (2023) 118620
    [203] T. Whitfield, N. Church, H. Stone, N. Jones, On the rate of microstructural degradation of Al-Ta-Ti-Zr refractory metal high entropy superalloys, Journal of Alloys and Compounds 939 (2023) 168369
    [204] H. Chen, A. Kauffmann, S. Seils, T. Boll, C. Liebscher, I. Harding, K.S. Kumar, D.V. Szabó, S. Schlabach, S. Kauffmann-Weiss, Crystallographic ordering in a series of Al-containing refractory high entropy alloys Ta–Nb–Mo–Cr–Ti–Al, Acta Materialia 176 (2019) 123-133
    [205] T.E. Whitfield, H.J. Stone, C.N. Jones, N.G. Jones, Microstructural degradation of the AlMo0. 5NbTa0. 5TiZr refractory metal high-entropy superalloy at elevated temperatures, entropy 23(1) (2021) 80
    [206] B. Sundman, H. Lukas, S. Fries, 2007, Computational thermodynamics: the Calphad method, Cambridge university press Cambridge
    [207] C. Zhang, M.C. Gao, 2016, CALPHAD modeling of high-entropy alloys, High-Entropy AlloysSpringer, pp. 399-444.
    [208] Y.-c. Liu, S.-y. Yen, S.-h. Chu, S.-k. Lin, M.-H. Tsai, Mechanical and thermodynamic data-driven design of Al-Co-Cr-Fe-Ni multi-principal element alloys, Materials Today Communications 26 (2021) 102096
    [209] S.-y. Yen, Y.-c. Liu, S.-h. Chu, C.-w. Chang, S.-k. Lin, M.-H. Tsai, B2-strengthened Al-Co-Cr-Fe-Ni high entropy alloy with high ductility, Materials Letters 325 (2022) 132828
    [210] E. Ghassemali, P.L. Conway, High-Throughput CALPHAD: A Powerful Tool Towards Accelerated Metallurgy, Frontiers in Materials 9 (2022)
    [211] J. Zhang, R. Wang, Y. Zhong, Identification of the Eutectic Points in the Multicomponent Systems with the High-Throughput CALPHAD Approach, Journal of Phase Equilibria and Diffusion (2022) 1-14
    [212] S. Yang, J. Lu, F. Xing, L. Zhang, Y. Zhong, Revisit the VEC rule in high entropy alloys (HEAs) with high-throughput CALPHAD approach and its applications for material design-A case study with Al–Co–Cr–Fe–Ni system, Acta Materialia 192 (2020) 11-19.
    [213] T. Klaver, D. Simonovic, M.H. Sluiter, Brute force composition scanning with a CALPHAD database to find low temperature body centered cubic high entropy alloys, Entropy 20(12) (2018) 911
    [214] A. Singh, S. Nag, S. Chattopadhyay, Y. Ren, J. Tiley, G. Viswanathan, H. Fraser, R. Banerjee, Mechanisms related to different generations of γ′ precipitation during continuous cooling of a nickel base superalloy, Acta Materialia 61(1) (2013) 280-293
    [215] A.J. Ardell, Precipitation hardening, Metallurgical Transactions A 16(12) (1985) 2131-2165
    [216] A. Argon, 2007, Strengthening mechanisms in crystal plasticity, OUP Oxford
    [217] V. Gerold, H. Haberkorn, On the critical resolved shear stress of solid solutions containing coherent precipitates, physica status solidi (b) 16(2) (1966) 675-684
    [218] C. Booth-Morrison, D.C. Dunand, D.N. Seidman, Coarsening resistance at 400 C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Materialia 59(18) (2011) 7029-7042
    [219] J. He, H. Wang, H. Huang, X. Xu, M. Chen, Y. Wu, X. Liu, T.G. Nieh, K. An, Z. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia 102 (2016) 187-196
    [220] Y. Ma, Q.G. Wang, B. Jiang, C. Li, J. Hao, X. Li, C. Dong, T.G. Nieh, Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni,Co,Fe,Cr)14 compositions, Acta Materialia 147 (2018) 213-225
    [221] W.F. Hosford, 2005, Mechanical Behavior of Materials, Cambridge University Press
    [222] D. Vidal, G. Hillel, I. Edry, M. Pinkas, D. Fuks, L. Meshi, Influence of alloying elements and the state of order on the formation of antiphase boundaries in B2 phases, Intermetallics (2022)
    [223] Y. Tian, L. Li, J. Li, Y. Yang, S. Li, G. Qin, Correlating Strength and Hardness of High‐Entropy Alloys, Advanced Engineering Materials 23 (2021)
    [224] E. Nembach, E. Nembach, 1997, Particle strengthening of metals and alloys, Wiley New York
    [225] S. Gorsse, M. Nguyen, O.N. Senkov, D.B. Miracle, Database on the mechanical properties of high entropy alloys and complex concentrated alloys, Data in brief 21 (2018) 2664-2678.
    [226] L. Zhang, K. Guo, H. Tang, M. Zhang, J. Fan, P. Cui, Y. Ma, P. Yu, G. Li, The microstructure and mechanical properties of novel Al-Cr-Fe-Mn-Ni high-entropy alloys with trimodal distributions of coherent B2 precipitates, Materials Science and Engineering: A 757 (2019) 160-171
    [227] J. Hao, Y. Ma, Q. Wang, C. Zhang, C. Li, C. Dong, Q. Song, P.K. Liaw, Formation of cuboidal B2 nanoprecipitates and microstructural evolution in the body-centered-cubic Al0. 7NiCoFe1. 5Cr1. 5 high-entropy alloy, Journal of Alloys and Compounds 780 (2019) 408-421
    [228] Q. Tian, G. Zhang, K. Yin, W. Wang, W. Cheng, Y. Wang, The strengthening effects of relatively lightweight AlCoCrFeNi high entropy alloy, Materials Characterization 151 (2019) 302-309

    下載圖示 校內:2024-12-31公開
    校外:2024-12-31公開
    QR CODE