簡易檢索 / 詳目顯示

研究生: 李哲慧
Lee, Jer-Huey
論文名稱: 含鋅物質與聚氯乙烯共裂行為與動力學之研究
The Pyrolysis Behavior and Kinetic Analysis of Polyvinylchloride Co-pyrolyze with Zinc Species
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 67
中文關鍵詞: 聚氯乙烯熱重分析裂解動力學FWO法
外文關鍵詞: PVC, Thermogravimetric Analysis, Pyrolysis behavior, Degradation kinetics, FWO method
相關次數: 點閱:92下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 添加不同物質與聚氯乙烯(Poly vinyl chloride, PVC)進行共裂解是處理廢塑膠極具發展潛力的方向。本研究以熱重分析為基礎,探討氮氣環境下聚氯乙烯混合三種不同含鋅物質(氯化鋅、氧化鋅、ZIF-8)之共裂解行為及其裂解動力學。當系統內添加氯化鋅或是氧化鋅,能大幅降低脫除氯化氫的起始溫度及最大裂解速率溫度,而與ZIF-8混合則能促進裂解第二階段之進行,說明含鋅物質對聚氯乙烯的分解普遍具有活性。本研究也將熱重分析結果綜合熱裂解試驗對共裂解行為提出解釋,並且以曲線擬合法及FWO法計算活化能及其他動力學參數,普遍而言混合含鋅物質後,裂解第1階段、第2階段的活化能皆會降低20至100kJ/mol,另外其反應級數也維持在1~2的區間,代表聚氯乙烯與含鋅物質的共裂解仍由聚氯乙烯裂解行為主導。

    This work investigates the pyrolysis behavior and the degradation kinetics of PVC and its mixture with ZnCl2, ZnO, and ZIF-8 under nitrogen atmosphere. The thermogravimetric analysis results were combined with the lab-scale pyrolysis test to explain the co-pyrolysis behavior, and the activation energy and other kinetic parameters were calculated by the curve fitting method and the FWO method. Generally speaking, thermogravimetric analysis results show that these zinc-containing substances have a great effect on PVC degradation. In addition, the activation energy of each stage will be reduced by 20-100kJ/mol. The reaction order of all kinds of system is in the range of 1 to 2, which means the co-pyrolysis behavior is still dominated by the PVC pyrolysis behavior.

    摘要 I 誌謝 IX 目錄 X 圖目錄 XIII 表目錄 XVI 第一章 前言 1 1-1 引言 1 1-2 研究動機與設計 3 第二章 文獻回顧 4 2-1 塑膠的熱裂解 4 2-2 聚氯乙烯的熱裂解 5 2-3 聚氯乙烯與其他種類塑膠共裂解 8 2-4 聚氯乙烯與金屬氧化物之共裂解 12 第三章 實驗 14 3-1 實驗藥品與設備 14 3-2 儀器介紹與操作條件 16 3-2-1 熱重分析儀 (Thermogravimetric analysis, TGA) 16 3-2-2 管式反應器(Tube reactor) 18 3-2-3 X光繞射儀 (X-ray diffraction, XRD) 19 3-2-4 傅立葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 21 3-4 沸石咪唑酯骨架-8(Zeolitic Imidazolate Frameworks, ZIF-8) 23 3-5 樣品配置與命名 25 3-6 研究流程圖 27 3-7 熱裂解動力學 27 3-8 曲線擬合法(Curve Fitting Method) 29 3-9 等轉化率試驗法(iso-conversional method) 29 3-10 Flynn–Wall–Ozawa法 (FWO method) 30 第四章 結果與討論 32 4-1 H66型聚氯乙烯之熱裂解 32 4-2 計量比例聚氯乙烯與含鋅物質的共裂解 35 4-3 聚氯乙烯與氯化鋅的共裂行為 37 4-4 聚氯乙烯與氧化鋅的共裂行為 39 4-5 聚氯乙烯與ZIF-8的共裂行為 43 4-5-1 ZIF-8促進碳-碳骨架之裂解 46 4-5-2 比較ZIF-67對PVC共裂解之影響 47 4-6 曲線擬合法計算裂解動力學參數 49 4-7 FWO法動力學分析 53 第五章 結論 62 第六章 參考資料 64

    [1] P. Europe, Plastics - the Facts 2021, Plastic Europe, 2022.
    [2] Formosa Plastics Corporation, 關於台塑, Formosa Plastics Corp.,.
    [3] P. Groppi, VinyLoop: Obtaining Virgin PVC from Cable Scraps, VinyLoop.
    [4] J. Yu, L.S. Sun, C. Ma, Y. Qiao, H. Yao, Thermal degradation of PVC: A review, Waste Manage, 48 (2016) 300-314.
    [5] H.R. Liu, C.J. Wang, J.Q. Zhang, W.P. Zhao, M.H. Fan, Pyrolysis Kinetics and Thermodynamics of Typical Plastic Waste, Energ Fuel, 34 (2020) 2385-2390.
    [6] Y.T. Zhang, Z.G. Fu, W. Wang, G.Z. Ji, M. Zhao, A.M. Li, Kinetics, Product Evolution, and Mechanism for the Pyrolysis of Typical Plastic Waste, Acs Sustainable Chemistry & Engineering, 10 (2022) 91-103.
    [7] V. Mortezaeikia, O. Tavakoli, M.S. Khodaparasti, A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis, Journal of Analytical and Applied Pyrolysis, 160 (2021).
    [8] C.-H. Wu, C.-Y. Chang, J.-L. Hor, S.-M. Shih, L.-W. Chen, F.-W. Chang, Two-Stage pyrolysis model of PVC, Canadian Journal of Chemical Engineering, 72 (1994) 644-650.
    [9] S. Ma, L.u. Jun, J. Gao, Study of the low temperature pyrolysis of PVC, Energy Fuels, 16 (2002).
    [10] W.H. Starnes, Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride), Progress in Polymer Science, 27 (2002) 2133-2170.
    [11] Y.u. Ben Gui, D.W. Qiao, S. Liu, Z. Han, H. Yao, X.u. Minghou, Nascent tar formation during polyvinylchloride (PVC) pyrolysis, Proc Combust Inst, 34 (2013).
    [12] A. Marongiu, T. Faravelli, G. Bozzano, M. Dente, E. Ranzi, Thermal degradation of poly(vinyl chloride), Journal of Analytical and Applied Pyrolysis, 70 (2003) 519-553.
    [13] M. Mehl, A. Marongiu, T. Faravelli, G. Bozzano, A. Dente, E. Ranzi, A kinetic modeling study of the thermal degradation of halogenated polymers, Journal of Analytical and Applied Pyrolysis, 72 (2004) 253-272.
    [14] A. Marcilla, M. Beltrán, Thermogravimetric kinetic study of poly(vinyl chloride) pyrolysis, Polymer Degradation and Stability, 48 (1995) 219-229.
    [15] R. Miranda, J. Yang, C. Roy, C. Vasile, Vacuum pyrolysis of PVC I. Kinetic study, Polymer Degradation and Stability, 64 (1999) 127-144.
    [16] J. Yang, R. Miranda, C. Roy, Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers, Polymer Degradation and Stability, 73 (2001) 455-461.
    [17] S. Kim, Pyrolysis kinetics of waste PVC pipe, Waste Manage, 21 (2001) 609-616.
    [18] P.E. Sánchez-Jiménez, A. Perejón, J.M. Criado, M.J. Diánez, L.A. Pérez-Maqueda, Kinetic model for thermal dehydrochlorination of poly(vinyl chloride), Polymer, 51 (2010) 3998-4007.
    [19] C. Wang, H. Liu, J. Zhang, S. Yang, Z. Zhang, W. Zhao, Thermal degradation of flame-retarded high-voltage cable sheath and insulation via TG-FTIR, Journal of Analytical and Applied Pyrolysis, 134 (2018) 167-175.
    [20] S.D. Gunasee, M. Carrier, J.F. Gorgens, R. Mohee, Pyrolysis and combustion of municipal solid wastes: Evaluation of synergistic effects using TGA-MS, Journal of Analytical and Applied Pyrolysis, 121 (2016) 50-61.
    [21] R. Miranda, J. Yang, C. Roy, C. Vasile, Vacuum pyrolysis of commingled plastics containing PVC - I. Kinetic study, Polymer Degradation and Stability, 72 (2001) 469-491.
    [22] R. Miranda, H. Pakdel, C. Roy, C. Vasile, Vacuum pyrolysis of commingled plastics containing PVC II. Product analysis, Polymer Degradation and Stability, 73 (2001) 47-67.
    [23] J. Wu, T. Chen, X. Luo, D. Han, Z. Wang, J. Wu, TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS, Waste Manage, 34 (2014) 676-682.
    [24] D. Li, S.J. Lei, P. Wang, L. Zhong, W.C. Ma, G.Y. Chen, Study on the pyrolysis behaviors of mixed waste plastics, Renewable Energy, 173 (2021) 662-674.
    [25] M.C. Gupta, S.G. Viswanath, Role of metal oxides in the thermal degradation of poly(vinyl chloride), Industrial & Engineering Chemistry Research, 37 (1998) 2707-2712.
    [26] L.H. Ye, T.L. Li, L. Hong, Co-pyrolysis of Fe3O4-poly(vinyl chloride) (PVC) mixtures: Mitigation of chlorine emissions during PVC recycling, Waste Manage, 126 (2021) 832-842.
    [27] M.X. Ji, L. Chen, J.J. Que, L.L. Zheng, Z.Z. Chen, Z.S. Wu, Effects of transition metal oxides on pyrolysis properties of PVC, Process Safety and Environmental Protection, 140 (2020) 211-220.
    [28] M. Blazso, E. Jakab, Effect of metals, metal oxides, and carboxylates on the thermal decomposition processes of poly (vinyl chloride), Journal of Analytical and Applied Pyrolysis, 49 (1999) 125-143.
    [29] S. Zhou, C. Liu, L. Zhang, Critical Review on the Chemical Reaction Pathways Underpinning the Primary Decomposition Behavior of Chlorine-Bearing Compounds under Simulated Municipal Solid Waste Incineration Conditions, Energy & Fuels, 34 (2020) 1-15.
    [30] T.T. Meng, H. Zhang, F. Lu, L.M. Shao, P.J. He, Comparing the effects of different metal oxides on low temperature decomposition of PVC, Journal of Analytical and Applied Pyrolysis, 159 (2021).
    [31] C.D. Doyle, Kinetic analysis of thermogravimetric data, Journal of Applied Polymer Science, 5 (1961) 285-292.
    [32] P.J. Larkin, Chapter 1 - Introduction: Infrared and Raman Spectroscopy, in: P.J. Larkin (Ed.) Infrared and Raman Spectroscopy (Second Edition), Elsevier2018, pp. 1-5.
    [33] S.B. Novakovic, G.A. Bogdanovic, C. Heering, G. Makhloufi, D. Francuski, C. Janiak, Charge-Density Distribution and Electrostatic Flexibility of ZIF-8 Based on High-Resolution X-ray Diffraction Data and Periodic Calculations, Inorganic Chemistry, 54 (2015) 2660-2670.
    [34] J.M. Criado, P.E. Sanchez-Jimenez, L.A. Perez-Maqueda, Critical study of the isoconversional methods of kinetic analysis, Journal of Thermal Analysis and Calorimetry, 92 (2008) 199-203.
    [35] L.J. Gonzalez-Ortiz, M. Arellano, C.F. Jasso, E. Mendizabal, M.J. Sanchez-Pena, Thermal stability of plasticized poly(vinyl chloride) compounds stabilized with pre-heated mixtures of calcium and/or zinc stearates, Polymer Degradation and Stability, 90 (2005) 154-161.
    [36] F. Jones, H. Tran, D. Lindberg, L.M. Zhao, M. Hupa, Thermal Stability of Zinc Compounds, Energ Fuel, 27 (2013) 5663-5669.
    [37] A. Moezzi, M. Cortie, A. McDonagh, Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide, Dalton Transactions, 45 (2016) 7385-7390.
    [38] T. Lee, H. Kim, W. Cho, D.Y. Han, M. Ridwan, C.W. Yoon, J.S. Lee, N. Choi, K.S. Ha, A.C.K. Yip, J. Choi, Thermosensitive Structural Changes and Adsorption Properties of Zeolitic Imidazolate Framework-8 (ZIF-8), Journal of Physical Chemistry C, 119 (2015) 8226-8237.
    [39] J.B. James, Y.S. Lin, Kinetics of ZIF-8 Thermal Decomposition in Inert, Oxidizing, and Reducing Environments, Journal of Physical Chemistry C, 120 (2016) 14015-14026.
    [40] R.L. Papurello, L.A. Lozano, E.V. Ramos-Fernandez, J.L. Fernandez, J.M. Zamaro, Post-Synthetic Modification of ZIF-8 Crystals and Films through UV Light Photoirradiation: Impact on the Physicochemical Behavior of the MOF, Chemphyschem, 20 (2019) 3201-3209.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE