簡易檢索 / 詳目顯示

研究生: 施維軒
Shi, Wei-Hsuan
論文名稱: 以質量平衡法建立原料作業之逸散性粒狀物排放係數
Establishing Fugitive Particle Emission Factors for Raw Material Operations by Mass Balance Method
指導教授: 吳義林
Wu, Yee-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 117
中文關鍵詞: 逸散性粉塵排放係數推估公式
外文關鍵詞: Fugitive particle, Emission factor formula
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一貫作業煉鋼廠中,原料堆置場為主要的逸散性粒狀物來源,依現行法規規範,原料堆置場的排放行為主要分成5項,分別是堆置風蝕揚塵、取料揚塵、卸料揚塵、車行揚塵以及輸送帶揚塵,目前環保署制定之排放係數主要參考PEDCo推估法,然而PEDCo之排放係數公式及參數值皆源自於美國各地進行之實驗結果,故其氣候條件、排放源狀況等都與台灣本土之情形不同,可能造成排放量之錯估,因此在現地進行監測,並建立自廠排放係數才能正確推估實際的排放量。
    為實地量測排放係數,本研究於107年12月、108年1月及108年5月於中國鋼鐵公司中之原料堆置場進行採樣,實驗之基本原理為質量平衡法,其概念為上下風處之質量差即為該汙染源之排放,本研究分別針對車行揚塵、堆置風蝕揚塵、取料揚塵以及卸料揚塵之TSP及PM2.5排放係數進行現地採樣,採樣方式為於排放源上下風處各架設高量採樣器及PM2.5採樣器,此外為量測垂直向之濃度變化,本研究使用高空作業車掛載滑輪,並使用攀岩繩吊掛光學微粒計數器,藉由上下拉升的方式量測垂直向之質量濃度變化。而各排放行為之排放係數受到很多影響因子影響,因此本研究除了現地量測排放係數外,同時針對各揚塵之影響因子進行現場量測以及調整,後續可利用計算出之排放係數與影響因子進行迴歸,求得排放係數推估公式,進而得到排放係數在不同環境條件下之數值,以更正確的估算排放量。
    根據本研究之現地量測結果車行揚塵TSP排放係數之結果介於1g/VKT至1258g/VKT之間,車行揚塵PM2.5排放係數之結果3g/VKT至103g/VKT之間。堆置風蝕揚塵排放係數結果中,鐵礦堆置之TSP排放係數0.002g/ton/hr至0.318g/ton/hr,煤礦堆置之TSP排放係數介於0.01g/ton/hr至0.484g/ton/hr,鐵礦堆置之PM2.5排放係數介於0.0002g/ton/hr至0.025g/ton/hr,煤礦堆置之PM2.5排放係數介於0.0004g/ton/hr至0.0729g/ton/hr。鐵礦取料之TSP排放係數介於1.87g/ton/hr至27.706g/ton/hr,煤礦取料之TSP排放係數介於0.677g/ton/hr至70.178g/ton/hr,鐵礦取料之PM2.5排放係數介於0.046g/ton/hr至0.697g/ton/hr,煤礦取料之PM2.5排放係數介於0.026g/ton/hr至0.260g/ton/hr。鐵礦卸料之TSP排放係數介於0.019g/ton/hr至22.037g/ton/hr,煤礦卸料之TSP排放係數介於0.067g/ton/hr至26.283g/ton/hr,鐵礦卸料之PM2.5排放係數介於0.005g/ton/hr至0.277g/ton/hr,煤礦卸料之PM2.5排放係數介於0.006g/ton/hr至0.262g/ton/hr。
    本研究所建立之公式如下所示: 鐵礦堆置風蝕揚塵TSP公式為EF=1.719*10-5S3.443U0.326,煤礦堆置風蝕揚塵TSP公式為EF=0.013S0.658U1.100,鐵礦堆置風蝕揚塵PM2.5公式為EF=0.005S1.863U1.038M-1.293,煤礦堆置風蝕揚塵PM2.5公式為EF=0.0006S0.952U1.591,鐵礦取料揚塵TSP公式為EF=0.025S2.102U2.623,煤礦取料揚塵TSP公式為EF=1.250S0.377U0.491,鐵礦取料揚塵PM2.5公式為EF=1.085*10-5S3.694U3.167,煤礦取料揚塵PM2.5公式為EF=67.944S0.787U3.301M-4.272,鐵礦卸料揚塵TSP公式為425.258S2.248U1.643H1.734M-3.875,煤礦卸料揚塵TSP公式為0.387S0.392U0.640H1.325M-0.793,鐵礦卸料揚塵PM2.5公式為0.0008S1.412U1.428H0.553M-0.129,煤礦卸料揚塵PM2.5公式為0.0008S0.788U5.030H4.864M-2.701。車行揚塵TSP公式為EF=0.757S1.701W0.328V0.832M-0.506,車行揚塵PM2.5公式為EF=3.61*10-5S0.795W3.448V0.540。
    並且可根據實驗中之各影響因子範圍,帶入排放係數公式中,得到適用於現場各排放行為之排放係數範圍,鐵礦堆置風蝕揚塵TSP排放係數範圍介於0.002g/tons/hr~0.053g/tons/hr,煤礦堆置風蝕揚塵TSP排放係數範圍介於0.001g/tons/hr ~0.342g/tons/hr,而鐵礦取料揚塵TSP排放係數範圍介於0.101g/tons/hr ~78.5g/tons/hr,煤礦取料揚塵TSP排放係數範圍介於1.13g/tons/hr ~6.54g/tons/hr,鐵礦卸料揚塵TSP排放係數範圍介於0.008g/tons/hr ~1452g/tons/hr,煤礦卸料揚塵TSP排放係數範圍介於0.193g/tons/hr ~7.69g/tons/hr。而車行揚塵TSP排放係數範圍介於19 g/VKT ~1180g/VKT,車行揚塵PM2.5排放係數範圍介於3g/VKT~42g/VKT。

    The emission of raw material operations is the main source of fugitive particle in integrated steel plant. However the emission factor formulated by the EPA mainly refer to foreign research, the climatic conditions and emission sources is different from that in Taiwan, so may result in a miscalculation of emissions. Therefore, establishing a self-factory emission factor can correctly estimate the actual emissions.
    In order to measure the emission coefficient in the field, the study was conducted at the raw material storage yard of a factory in Kaohsiung in December, 2018; January, 2019 and May,2019. The basic principle of the experiment is the mass balance method, the concept is that, source emissions is the difference of concentration between up and down wind. The sample method is set up high volume sampler and PQ200 to sample TSP and PM2.5. additionally, this study used the aerial work vehicle which mount the pulley, and use the climbing rope to hang the optical particle counter, and measure the vertical direction concentration by pulling up and down.
    According to the local measurement results of this study, loading dust has larger emission factor than unloading dust and pile wind erosion dust. And the emission factor of each emission behavior can be imply by multiple linear regression to obtain an emission factor estimation formula related to the impact factor, which can reflect the emission factor under different conditions.

    第 1 章 前言 1 1.1 研究緣起 1 1.2 研究目的 2 第 2 章 文獻回顧 3 2.1 中鋼製程簡介 3 2.1.1 一貫作業煉鋼 3 2.1.2 中鋼製程逸散性排放 4 2.2逸散性粒狀物相關研究 5 2.2.1逸散性粒狀物排放機制 5 2.2.2逸散性粒狀物垂直剖面濃度監測 6 2.2.3逸散性粒狀物控制技術 6 2.3 建立排放係數方法介紹 9 2.3.1 車行揚塵排放係數 9 2.3.2堆置風蝕揚塵排放係數 15 2.3.3取卸料揚塵 20 2.3.4以質量平衡法量測排放係數案例介紹 25 2.4 各排放行為影響因子 31 2.4.1 車行揚塵 31 2.4.2 堆置風蝕揚塵 31 2.4.3 取卸料揚塵 32 第 3 章 研究方法 33 3.1 研究架構 33 3.2 實驗設計與原理 34 3.3採樣方法 35 3.3.1 採樣設備 35 3.4排放係數計算 49 3.4.1 質量平衡法計算原理 49 3.4.2 排放係數計算 52 3.5排放係數公式 53 3.5.1 車行揚塵排放係數推估方程式 53 3.5.2 堆置風蝕揚塵排放係數推估方程式 54 3.5.3 取料揚塵排放係數推估方程式 55 3.5.4 卸料揚塵排放係數推估方程式 56 第 4 章 結果與討論 57 4.1現地量測排放係數結果 57 4.1.1 車行揚塵排放係數與影響參數結果 64 4.1.2堆置風蝕揚塵排放係數與影響參數結果 69 4.1.3取料揚塵排放係數與影響參數結果 73 4.1.4卸料揚塵排放係數與影響參數結果 78 4.2排放係數公式迴歸結果 84 4.2.1 車行揚塵排放係數公式結果 84 4.2.2堆置風蝕揚塵排放係數公式結果 86 4.2.3取料揚塵排放係數公式結果 90 4.2.4卸料揚塵排放係數公式結果 95 4.2.5排放係數應用於現場 99 4.2.6排放係數公式與文獻比較 103 第 5 章 結論與建議 109 5.1結論 109 5.2建議 111 參考文獻 112

    1. Amato, F., Karanasiou, A., Moreno, T., Alastuey, A., Orza, J. A. G., Lumbreras, J., ... & Querol, X. Emission factors from road dust resuspension in a Mediterranean freeway. Atmospheric environment, 61, 580-587.2012.
    2. Badr, T. and Harion, J. L. Effect of aggregate storage piles configuration on dust emissions. Atmos. Environ, 41, 360-368.2007.
    3. Badr, T.& Harion, J. L.,Effect of aggregate storage piles configuration on dust emissions. ,Atmospheric Environment,41(2), 360-368.2007.
    4. Bagnold, R. A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. P. Roy. Soc. Lond. A Mat, 225, 49-63.1954.
    5. Blanco, H. and Lal, R. Principles of Soil Conservation and Management. Springer. 2008.
    6. Bohn, R., Cuscino, T., & Cowherd, C. Fugitive emissions from integrated iron and steel plants.1978.
    7. Borrmann, S., & Jaenicke, R. Wind tunnel experiments on the resuspension of sub-micrometer particles from a sand surface. Atmospheric Environment (1967), 21(9), 1891-1898.1987.
    8. Chang, C. T. Characteristics and emission factors of fugitive dust at gravel processing sites. Aerosol and Air Quality Research, 6(1), 15-29.2006.
    9. Chaulya, S. K., Chakraborty, M. K., Ahmad, M., Singh, R. S., Bondyopadhay, C., Mondal, G. C., & Pal, D. Development of empirical formulae to determine emission rate from various opencast coal mining operations. Water, Air, and Soil Pollution, 140(1-4), 21-55.2002.
    10. Claiborn, Candis, et al. Evaluation of PM10 emission rates from paved and unpaved roads using tracer techniques. Atmospheric environment, 29.10: 1075-1089.1995.
    11. Cowherd Jr, C., & Englehart, P. J. Paved road particulate emissions. Washington DC: US Environmental Protection Agency, 8-30.1984.

    12. Cowherd Jr, C., Bohn, R., & Cuscino, T. Fugitive emission from integrated iron and steel plants. Report No. EPA-600/2-78-050. Research Triangle Park, NC, US Environmental Protection Agency, Industrial Environmental Research Laboratory.1978.
    13. Cowherd JR, C.; Englehart, P. J. Paved road particulate emissions. Washington DC: US Environmental Protection Agency, 8-30.1984.
    14. Cowherd Jr., C. Control of windblown dust from storage piles. Environ. Int, 6, 307-311.1981.
    15. Cowherd Jr., C., Axetall Jr., K., Guenther, C. M., and Jutze, G. A. Development of Emission Factors for Fugitive Dust Sources. EPA-450/3-74-037, USEPA.1974.
    16. Dong, Z.B., Liu, X.P., Wang, H.T., Zhao, A.G., Wang, X.M. The flux profile of a blowing sand cloud: a wind tunnel investigation. Geomorphology, 49(3-4), 219-230.2003.
    17. Dyck, Rodney IJ; Stukel, James J. Fugitive dust emissions from trucks on unpaved roads. Environmental Science & Technology, 10.10: 1046-1048.1976.
    18. Etyemezian, V., Ahonen, S., Nikolic, D., Gillies, J., Kuhns, H., Gillette, D., and Veranth, J. Deposition and removal of fugitive dust in the arid southwestern United States: measurements and model results. J. Air Waste Manage, 54, 1099-1111.2004
    19. Etyemezian, V., Kuhns, H., Gillies, J., Green, M., Pitchford, M., & Watson, J. Vehicle-based road dust emission measurement: I—methods and calibration. Atmospheric Environment, 37(32), 4559-4571.2003.
    20. Fairchild, C. I., & Tillery, M. I. Wind tunnel measurements of the resuspension of ideal particles. Atmospheric Environment, 16(2), 229-238.1982.
    21. Fécan, F., Marticorena, B., & Bergametti, G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. In Annales Geophysicae (Vol. 17, No. 1, pp. 149-157). Springer-Verlag.1998.
    22. Ghose, M. K. Emission factors for the quantification of dust in Indian coal mines. J. Sci. Ind. Res. India, 63, 763-768.2004.
    23. Gillette, D. A., Fryrear, D. W., Gill, T. E., Ley, T., Cahill, T. A., & Gearhart, E. A. Relation of vertical flux of particles smaller than 10 μm to total aeolian horizontal mass flux at Owens Lake. Journal of Geophysical Research: Atmospheres (1984–2012), 102(D22), 26009-26015.1997.
    24. Gillies, J. A., Etyemezian, V., Kuhns, H., Nikolic, D., & Gillette, D. A. Effect of vehicle characteristics on unpaved road dust emissions. Atmospheric Environment, 39(13), 2341-2347.2005
    25. Holmén, B. A., Eichinger, W. E., and Flocchini, R. G. Application of elastic lidar to PM10 emissions from agricultural nonpoint sources. Environ. Sci. Technol, 32, 3068-3076.1998.
    26. Holmén, B. A., James, T. A., Ashbaugh, L. L., and Flocchini, R. G. Lidar-assisted measurement of PM10 emissions from agricultural tilling in California's San Joaquin Valley–Part I: lidar. Atmos. Environ, 35, 3251-3264.2001.
    27. Holmén, B. A., James, T. A., Ashbaugh, L. L., and Flocchini, R. G. Lidar-assisted measurement of PM10 emissions from agricultural tilling in California's San Joaquin Valley–Part II: emission factors. Atmos. Environ, 35, 3265-3277.2001.
    28. Kantamaneni, Ravi, et al. The measurement of roadway PM10 emission rates using atmospheric tracer ratio techniques. Atmospheric Environment, 30.24: 4209-4223.1996.
    29. Kawamura, R. Study of sand movement by wind. Univ. of Tokyo, Inst. of Sci. and Technol.1951.
    30. Kenny, L. C., Gussman, R., and Meyer, M. Development of a sharp-cut cyclone for ambient aerosol monitoring applications. Aerosol Sci. Tech., 32, 338-358.2000.
    31. Kuhns, H., Etyemezian, V., Green, M., Hendrickson, K., McGown, M., Barton, K., & Pitchford, M. Vehicle-based road dust emission measurement—Part II: Effect of precipitation, wintertime road sanding, and street sweepers on inferred PM10 emission potentials from paved and unpaved roads. Atmospheric Environment, 37(32), 4573-4582.2003.
    32. Kuhns, H., Gillies, J., Etyemezian, V., Dubois, D., Ahonen, S., Nikolic, D., & Durham, C. Spatial variability of unpaved road dust PM10 emission factors near El Paso, Texas. Journal of the Air & Waste Management Association, 55(1), 3-12.2005.
    33. Leys, J. N.Soil crusts: their effect on wind erosion, Research Note 1/90, Soil Conservation Service of New SouthWales, Australia.1990.
    34. MacKenzie, H. J. and Pearson, H.W. Preliminary studies on the potential use of algae in the stabilization of sand wastes and wind blow situations', British Journal of Phycology, 14, 126.1979.
    35. Majestic, B. J., Schauer, J. J., Shafer, M. M., Fine, P. M., Singh, M., and Sioutas, C. Trace metal analysis of atmospheric particulate matter: A comparison of personal and ambient samplers. J. Environ. Eng. Sci.,7, 289-298.2008.
    36. Mark, D., Vincent, J. H., Stevens, D. C., and Marshall, M. Investigation of the entry characteristics of dust samplers of a type used in the British nuclear industry. Atmos. Environ., 20, 2389-2396.1986.
    37. Mueller, S. F., Mallard, J. W., Mao, Q., & Shaw, S. L.Emission factors for fugitive dust from bulldozers working on a coal pile. Journal of the Air & Waste Management Association, 65(1), 27-40.2015.
    38. Mueller, Stephen F., et al. Fugitive particulate emission factors for dry fly ash disposal. Journal of the Air & Waste Management Association, 63.7: 806-818.2013.
    39. Nicholson, K. W. A review of particle resuspension. Atmospheric Environment , 22(12), 2639-2651.1988.
    40. Nicholson, K. W. Wind tunnel experiments on the resuspension of particulate material. Atmospheric Environment. Part A. General Topics, 27(2), 181-188.1993.
    41. Nicholson, K. W. The dry deposition of small particles: a review of experimental measurements. Atmos. Environ., 22, 2653-2666.1988.
    42. Padoan, E., Ajmone-Marsan, F., Querol, X., & Amato, F.An empirical model to predict road dust emissions based on pavement and traffic characteristics. Environmental Pollution, 237, 713-720.2018.
    43. Park, S. S., Bae, M. S., and Kim, Y. J. Chemical Composition and Source Apportionment of PM2.5 Particles in the Sihwa Area, Korea. J. Air Waste Manage., 51, 393-405.2001.
    44. Ravi, S., & D'Odorico, P. A field‐scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32(21).2005.
    45. Ravi, S., Zobeck, T. M., Over, T. M., Okin, G. S., & D'ODORICO, P. A. O. L. O. On the effect of moisture bonding forces in air‐dry soils on threshold friction velocity of wind erosion. Sedimentology, 53(3), 597-609.2006.
    46. Roney, J. A., & White, B. R. Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel. Atmospheric Environment, 40(40), 7668-7685.2006.
    47. Stunder, B. B., and Arya, S. P. S. Windbreak effectiveness for storage pile fugitive dust control: a wind tunnel study. JAPCA., 38, 135-143.1988.
    48. Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., and Hao, Z. The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmos. Environ., 38, 5991-6004.2004.
    49. Torano, J. A., Rodriguez, R., Diego, I., Rivas, J. M., & Pelegry, A. Influence of the pile shape on wind erosion CFD emission simulation. Applied mathematical modelling, 31(11), 2487-2502.2007.
    50. Toraño, J., Torno, S., Diego, I., Menendez, M., and Gent, M. Dust emission calculations in open storage piles protected by means of barriers, CFD and experimental tests. Environ. Fluid Mech., 9, 493-507.2009.
    51. U.S. EPA, AP 42. Fifth Edition, vol. I, Chapter 13, Miscellaneous Sources. 1995.
    52. Venkatram, Akula, et al. Using a dispersion model to estimate emission rates of particulate matter from paved roads. Atmospheric Environment, 33.7: 1093-1102.1999.
    53. Venkatram, Akula. A critique of empirical emission factor models: a case study of the AP-42 model for estimating PM10 emissions from paved roads. Atmospheric Environment, 34.1: 1-11.2000.
    54. Von Kármán, T., & Lin, C. C. On the statistical theory of isotropic turbulence. Advances in Applied Mechanics, 2, 1-19.1951.
    55. Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., and An, Z. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmos. Environ., 40, 2935-2952.2006.
    56. Watson, John G., et al. Reconciling urban fugitive dust emissions inventory and ambient source contribution estimates: Summary of current knowledge and needed research. DRI document, 6110.4: 240.2000.
    57. Williams, J. D., Dobrowolski, J. P.,West, N. E. and Gillette, D. A. `Microphytic crust in¯uences on wind erosion', Transactions of the American Society of Agricultural Engineers, 38, 131-137.1995.
    58. Wilson, W. E., and Suh, H. H. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. J. Air Waste Manage., 47, 1238-1249.1997.
    59. Y.M. Chang. et. al, Comparison on PM10 and PM2.5 Emissions from Exposed Area,Canadian J. of Civil Engineering,37(5),787-795,2010.
    60. Zhang, X., Chen, W., Ma, C., & Zhan, S. Modeling the effect of humidity on the threshold friction velocity of coal particles.Atmospheric environment,56, 154-160.2012.
    61. 林志剛,「結合WRF及Fluent模式建置濁水溪揚塵預報系統,國立成功大學環境工程所碩士論文」,2015。
    62. 吳義林、洪偉軒,「以質量平衡法量測裸露地、營建工地及道路揚塵之PM2.5排放係數」,中華民國環境工程學會2015空氣污染控制技術研討會,2015。
    63. 台灣綠碁科技股份有限公司,「103年臺中市細懸浮微粒(PM2.5)排放清冊建置暨減量措施推動計畫」,2015。
    64. 台灣綠碁科技股份有限公司,「104年臺中市細懸浮微粒(PM2.5)管制計畫」,2016。
    65. 台灣綠碁科技股份有限公司,「106 年臺中市細懸浮微粒(PM2.5)採樣分析計畫」,2017。
    66. 劉憲民,「道路揚塵評估結果與懸浮微粒監測結果之關聯性分析」 臺灣大學環境工程學研究所學位論文: 1-128,2007。
    67. 林文印、顏有利、陳志傑、吳義林、張章堂、賴全裕,「河川揚塵對空氣品質影響預防評估計畫」,100年度環保署/國科會空污防制科研合作計畫,NSC100-EPA-F-007-002,2012。
    68. 戚啟勛、陳孟青,台灣之氣候,中央氣象局出版,1993。
    69. 繆敦耀、蔡春進,「逸散性揚塵之排放係數與控制效率量測研究」,1999。
    70. 康廷工程顧問企業有限公司,「105年度空氣污染綜合防治及應變計畫」,2017。
    71. 新紀工程顧問有限公司,「粒狀物逸散源調查及管制策略研擬」,2016。

    下載圖示 校內:2024-07-15公開
    校外:2024-07-15公開
    QR CODE