簡易檢索 / 詳目顯示

研究生: 潘昱妘
Pan, Yu-Yun
論文名稱: 有機無機混合鈣鈦礦型材料APbX3 (A= MA, FA;X = Cl, Br, I)電子結構之第一原理計算研究
First-Principles Study on Electronic Structures of APbX3 (A= MA, FA;X = Cl, Br, I) Hybrid Perovskites
指導教授: 蘇彥勳
Su, Yen-Hsun
共同指導教授: 關肇正
Kaun, Chao-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 第一原理混成鈣鈦礦太陽能電池
外文關鍵詞: First-principles, Hybrid Perovskite, Solar Cell
相關次數: 點閱:82下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦太陽能電池是目前效率最高的固態太陽能電池。其中的鈣鈦礦材料是高效率固態太陽能電池的關鍵材料,而混合鈣鈦礦結構中心的有機分子是影響其太陽能電池穩定性以及電子特性的重大主因。
    本研究利用第一原理計算有機無機混合鈣鈦礦APbX3(A = CH3NH3+簡寫MA, NH2CHNH2+簡寫FA,X = Cl, Br, I),總共有六種不同鈣鈦礦並針對其優化的幾何結構和電子特性做探討。分析它們的有機分子如何有影響鈣鈦礦的主要結構,分析屬於鈣鈦礦框架Pb及不同的鹵素原子X於能帶結構、軌域、態密度以及電荷密度的影響,藉由這些分析結果討論鈣鈦礦材料的電子特性和光學性質以及穩定性。此外,我們比較有機分子FA和MA系統的不同,對於能隙、穩定度、電子雲分佈的均勻度還有遲滯特性的探討。
    研究結果發現,無論是MA還是FA有機分子鈣鈦礦系統的幾何優化的結構都有使Pb和鹵素原子X框架向外撐出產生扭曲,使得對稱性下降。而在能隙主導的部分,由電子結構圖和態密度圖能看出,導帶部分為Pb的p軌域做主導,價帶為鹵素X的p軌域作主導,碘原子較特殊,價帶為碘的6p及6s軌域作主導。可以看出APbX3中,APbI3因為能態多而電子傳輸路徑多和效率較高有很大的關係。
    鈣鈦礦中心有機分子的部分,FAPbX3系統的鈣鈦礦在電荷分佈均勻度上由態密度投影實空間圖可看到FA態密度比起MA的態密度是由較均勻的電子雲撐起鈣鈦礦框架,使立方體結構穩定性高;由數值電偶極矩表示得出,FA的電偶極矩小於MA的2~3倍左右,電子雲分佈較均勻且不易有電荷遲滯的現象產生,是良好的太陽能吸光及電子電洞傳輸材料。

    The perovskite solar cell is the highest efficiency solid-state solar cell, popping up in recent years. Organic-inorganic hybrid perovskite is the key materials for high efficiency solid-state solar cells.
    In this work, we study the geometric and electronic properties of organic-inorganic hybrid perovskite, APbX3 (A = CH3NH3+ ,=MA and NH2CHNH2+,=FA, and X = Cl, Br, I) from first principles. Particularly, their geometries, band structures, orbitals, density of states, and the charge densities are analyzed, revealing the electronic and optical properties, as well as the stability, of such materials. In addition, we compare the band gap of FAPbI3 with the measured data. Finally, we compare the electronic features of FAPbX3 with MAPbX3.
    The results show that not only MA but also FA cations after structural optimization will disturb the frame of perovskite and make the structure asymmetry. In E-K diagram, the p orbital of the Pb atom affects the conduction band minimum, while the p orbitals of the Cl (Br) atoms influence the valence band maximum. The band structure for APbI3, the p orbital of the Pb atom controls the conduction band minimum, while the s and p orbitals of the I atoms dominate the valence band maximum. The valence band maximum of APbI3 is closer to the Fermi energy and has larger density of states, so this material can generate and
    transfer more electrons than other hybrid perovskites.
    Compare with FA cations and MA cations, We calculate the dipole of the perovskite. The density of state of FAPbX3 are more uniform distribution than the MAPbX3 in the real space. the charge distribution of FA cations are larger than MA ones, supporting that FA cations interact with the Pb-X frame stronger than MA, making the systems more stable. We show the value of the electric dipole moment that dipole of FAPbX3 are reduce than two to three times of MAPbX3.The electron cloud of FA cation is more uniform distribution and less hysteresis phenomenon. As a result, FAPbX3 will be a good light-absorbing material and also good for carrier transmission in perovskite solar cells.

    目錄 摘要 I Abstract II 誌謝 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 4 第二章 基礎理論及文獻回顧 6 2-1 理論與計算方式 6 2-1.1第一原理計算與應用 6 2-1.2 薛丁格方程式(Schrödinger equation) 6 2-1.3 多電子系統與 Hartree-Fock 近似 9 2-1.4 密度泛函理論(Density Function Theory, DFT) 10 2-1.5 Hohenberg-Kohn理論 11 2-1.6 Kohn-Sham方法 14 2-1.7局部密度泛函近似法 (Local Density function Approximation, LDA ) 16 2-1.8 贋勢法(Pseudopotential method) 17 2-1.9 自洽場方法(Self-consistent field method, SCF) 18 2-1.10 能帶結構理論計算 20 2-2 鈣鈦礦材料文獻回顧 26 2-2.1 固態鈣鈦礦太陽能電池 26 2-2.2 有機無機混成鈣鈦礦型太陽能材料 28 2-2.3 模擬有機無機混成鈣鈦礦之物理性質 31 第三章 計算軟體介紹 33 3-1 Siesta 33 3-2 Nanodcal 34 3-3 計算參數 36 第四章 計算結果與分析 38 4-1 鈣鈦礦材料結構優化 39 4-2 鈣鈦礦材料電子結構分析 43 4-3 鈣鈦礦材料態密度分析 50 4-4 鈣鈦礦材料實空間態密度分佈 56 4-5 鈣鈦礦材料的電偶極矩衡量 58 第五章 結論 62 5-1優化對於結構的影響 62 5-2能隙主要影響的軌域 62 5-3 有機分子對於結構和電性的影響 63 參考文獻 65

    參考文獻
    1. 台灣電力公司, http://www.taipower.com.tw/content/new_info/new_info-c37.aspx?LinkID=13.
    2. NREL Efficiency Chart. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (Accessed July 9, 2016).
    3. Padture lab, Brown University, https://news.brown.edu/articles/2015/03/perovskite.
    4. E. Schrödinger, An Undulatory Theory of the Mechanics of Atoms and Molecules, Phys. Revi., 28, 1049-1070 (1926).
    5. J.C. Slater, A Simplification of the Hartree-Fock Method, Phy. Revi., 81, 385-390 (1951).
    6. V. Fock, Naherungsmethode zur Losing des quanlenmechanischen Mehrkorperproblems, Z. Phys., 61, 126-148 (1930).
    7. N. Bohr, On the Constitution of Atoms and Molecules, Phil. Mag., 26, 1 (1913).
    8. E. Rutherford, The Scattering of α and β Particles by Matter and the Structure of the Atom, Philo. Mag., 21, 669-688 (1911).
    9. P. Hohenberg, W.Kohn, Inhomogeneous Electron Gas, Phys. Rev., 136, 864-871 (1964).
    10. W. Kohn, L.J.Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev.,. 140, 1133-1138 (1965).
    11. M. C. Payne, M.P.Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Iterative minimization techniques forab initiototal-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys., 64, 1045-1097 (1992).
    12. I. N. levine, Quantum Chem., 5th, New York (1992).
    13. F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Physik, 52, 555-600 (1928).
    14. H. J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188-5192 (1976).
    15. X. Liu, W. Zhao, H. Cui, Y. Xie, Y. Wang, T. Xu, F. Huang, Organic–inorganic halide perovskite based solar cells–revolutionary progress in photovoltaics, Inorg. Chem. Front. , 2, 315-335 (2015).
    16. I. Chung, , B. Lee, J. He, R.P. Chang, M. G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature, 485, 486-489 (2012).
    17. J. Burschka, N. Pellet, S. Moon, R. Humphry-Baker, P. Gao, M. K Nazeeruddin,
    M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature, 499, 316-319 (2013).
    18. N. Kitazawa, Y.Watanabe, Y. Nakamura, Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals, Mater. Sci., 37, 3585-3587 (2002).
    19. A. Kojima, K.Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131, 6050-6051 (2009).
    20. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park, N. G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell, Nanoscale, 3, 4088-4093 (2011).
    21. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. Il Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348, 1234-1237 (2015).
    22. S. D. Stranks, G. E. Eperon , G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science, 342, 341-344 (2013).
    23. G. Xing, N.Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, T. C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3, Science, 342, 344-347 (2013).
    24. G. P. Victoria , J.P.J. Emilio, W. S. Arsyad, E. M. Barea, F. S. Francisco, M. S. Ivan, J. Bisquert, General working principles of CH3NH3PbX3 perovskite solar cells, Nano. Lett. , 14, 888-893 (2014).
    25. E. Edri, S. Kirmayer, D. Cahen, G. Hodes, High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite, J Phys. Chem. Lett., 4, 897-902 (2013).
    26. A. Kojima, M.Ikegami, K.Teshima, T. Miyasaka, Highly luminescent lead bromide perovskite nanoparticles synthesized with porous alumina media. Chem. Lett., 41, 397-399 (2012).
    27. M. M. Lee, J. Teuscher, T. Miyasaka, T. N Murakami, H. J Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643-647 (2012).
    28. N. K. Kumawat, J. Teuscher, T. Miyasaka, T. N Murakami, H. J. Snaith, Band Gap Tuning of CH3NH3Pb (Br1–x Cl x) 3 Hybrid Perovskite for Blue Electroluminescence, ACS Appl. Mater. & interfaces, 7, 13119-13124 (2015).
    29. C. C. Stoumpos, C.D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52, 9019-9038 (2013).
    30. J. H. Im, I. H. Jang, N. Pellet, M. Grätzel, N. G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells, Nat. Nanotech., 9, 927-932 (2014).
    31. J. H. Noh, S.H.Im, J. H. Heo, T. N. Mandal, S. I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano. Lett., 13, 1764-1769 (2013).
    32. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel, S. I. Seok, Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics, 7, 486-491 (2013).
    33. M. Grätzel, The light and shade of perovskite solar cells, Nat. Mater., 13, 838-842 (2014).
    34. H. S. Kim, S.H. Im, and N. G. Park, Organolead halide perovskite: new horizons in solar cell research, J. Phys. Chem. C, 118, 5615-5625 (2014).
    35. T. Baikie, Y. Fang, J. M. Kadro,M. Schreyer, F. Wei, S. G. Mhaisalkar, M.Graetzel, T. J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, J. Mater. Chem. A, 1, 5628 (2013).
    36. A. Binek, F. C Hanusch,P. Docampo, T. Bein, Stabilization of the trigonal high-temperature phase of formamidinium lead iodide, J. Phys. Chem. Lett., 6, 1249-1253 (2015).
    37. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes, Mater. Today, 1, 155-162 (2015).
    38. M.A. Loi, J.C. Hummelen, Hybrid solar cells: perovskites under the sun, Nat. Mater. , 12, 1087-1089 (2013).
    39. E. Smecca, Y. Numata, I. Deretzis, G. Pellegrino, S. Boninelli, T. Miyasaka, A. L. Magnaa, A. Alberti, Stability of solution-processed MAPbI3 and FAPbI3 layers, Phys. Chem. Chem. Phys., 18, 13413-13422 (2016).
    40. G. E. Eperon, S. D. Stranks, C. Menelaou, M. BJohnston,L. M. Herz, H. J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7, 982-988 (2014).
    41. J. Seo, J.H. Noh, S. I. Seok, Rational Strategies for Efficient Perovskite Solar Cells, Acc. Chem. Res., 49, 562-572 (2016).
    42. W. J. Yin, T. Shi, Y. Yan, Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phy. Lett., 104, 063903 (2014).
    43. G. Giorgi, J. I. Fujisawa, H. Segawa, K. Yamashita, Cation Role in Structural and Electronic Properties of 3D Organic–Inorganic Halide Perovskites: A DFT Analysis, J. Phys. Chem. C, 11, 12176-12183 (2014).
    44. E. Mosconi, E.Ronca, and F. D. Angelis, First-Principles Investigation of the TiO2/Organohalide Perovskites Interface: The Role of Interfacial Chlorine, J. Phys. Chem. Lett., 5, 2619-2625 (2014).
    45. C.Motta , F. El-Mellouhi, S. Kais, N. Tabet, F. Alharbi, S. Sanvito, Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3, Nat. Commun., 6 (2015).
    46. Y. Ren, I. W. Oswald, X. Wang, G. T McCandless, J. Y Chan, , Orientation of Organic Cations in Hybrid Inorganic–Organic Perovskite CH3NH3PbI3 from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies, Cryst. Growth Des, 16, 2945-2951 (2016).
    47. J. M Soler, E. Artacho, J. D Gale, A. Garc´ıa, J. Junquera, P. Ordejon, D. Sanchez-Portal The SIESTA method for ab initio order-N materials simulation, J. Phys. Condens. Mat., 14, 2745-2779 (2002).
    48. J. Taylor, H. Guo, J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 63, 245407 (2001).
    49. D.B. Mitzi, Synthesis, Structure, and Properties of Organic-Inorganic Perovskites and Related Materials, Prog. Inorg. Chem., 48, 1-121 (1999).
    50. J. M. Frost, K. T Butler, F. Brivio, C. H Hendon, M. Van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett., 14, 2584-2590 (2014).
    51. A. A. Zhumekenov, M. I. Saidaminov, M. A. Haque, E. Alarousu, S. P. Sarmah, B. Murali, I. Dursun, X. H. Miao, A. L. Abdelhady, T. Wu, Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length, ACS Energy Lett., 1, 32-37 (2016).
    52. F. Brivio, K.T. Butler, A. Walsh, M. Van Schilfgaarde, Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers, Phys. Rev. B, 89, 155204 (2014).
    53. P. Umari, E. Mosconi, and F. D. Angelis, Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 Perovskites for Solar Cell Applications, Sci. Rep., 4 (2014)
    54. L. Pauling, The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry, Cornell university press, 18 (1960).
    55. O. Almora, I. Zarazua, E. Mas-Marza, I. Mora-Sero, J. Bisquert, G. Garcia-Belmonte, Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells, J. Phys. Chem. Lett., 6, 1645-1652 (2015).

    下載圖示 校內:2018-09-01公開
    校外:2018-09-01公開
    QR CODE