| 研究生: |
張凱興 Chang, Kai-Hsing |
|---|---|
| 論文名稱: |
以規則性排列PMMA微米球為模板製備巨孔結構Ni/YSZ複合材料之研究 Fabrication of Macroporous Ni/YSZ Compound Derived From Ordered PMMA Microspheres as Template |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 固態氧化物燃料電池 、高分子球合成 |
| 外文關鍵詞: | SOFC, Porous composites |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究和其他發電技術相比較,在固態氧化物燃料電池上具有更高效率、無噪音、低汙染等優點。在固態氧化物燃料電池之電性微結構中,具有規則性的孔洞會有助於氣體的傳送及提升其反應速率。本研究利用PMMA 微米球當作陽極之巨孔結構Ni/YSZ 模板,而Ni(CH3COO)2前驅物溶液為鎳金屬之來源。單分散之PMMA球在沉積時利用重力沉澱的方式規則排列後,以沉浸法在孔隙內填入NiO/YSZ前驅物溶液,再經過熱處理從800oC至1100oC移除PMMA球以得到規則性之巨孔結構。同時探討PMMA球之尺寸大小、溫度和還原氣氛對於結構之影響。
實驗結果顯示,可以無乳化劑乳化聚合法可成功的製備出規則排列0.15μm、0.3μm、0.5μm以及1μm尺寸大小PMMA球來當作巨孔結構之模板。由熱差(DTA)結果可知,在260℃至380℃之間有強烈的放熱峰存在。對應熱重分析(TG)結果,也可發現PMMA球約在260℃開始有明顯的熱重損失,隨溫度持續上升,熱重損失也逐漸增加,至約380℃時熱重損失幾乎已達100%, PMMA球模板在加熱到380℃時即完全分解,符合DTA分析之結果。
在1100oC持溫4小時之後,以PMMA球為模板所製備之NiO/YSZ巨孔結構已完全消失,然而在1000oC之溫度下,NiO/YSZ仍可維持其巨孔結構。另外當氧化鎳在還原氣氛下還原成鎳金屬,由於氧分子消失產生空孔而有壓應力,造成Ni/YSZ之機械強度較NiO/YSZ明顯降低。而以直徑0.3μm與0.5μm之PMMA球為模板時可製備出三維規則性之巨孔結構,孔徑分別為0.15μm與0.37μm,利用氮氣等溫吸附/脫附分析孔徑為0.15μm與0.37μm之巨孔結構得知其BET比表面積為21.64m2/g與15.32m2/g。
由甲烷催化結果可知,陽極材料Ni/YSZ之甲烷催化效能,隨著孔洞越小與測試溫度(600oC至900oC)越高,其催化效能越好。原因在於Ni/YSZ孔徑越小相對地表面積越大,具催化能力之鎳金屬晶粒擁有較快之反應速率進行甲烷之催化反應,而得到較高之催化效率。由300nm PMMA球所製備之Ni/YSZ,在測試溫度為900oC時,陽極材料Ni/YSZ之甲烷催化轉化效率達79%。
陽極材料Ni/YSZ導電性隨著NiO:YSZ體積比增加而上升。結果顯示,NiO:YSZ體積比為100% (1:0)時,陽極材料Ni/YSZ之導電率為55.94(S/cm),而當NiO:YSZ體積比為90% (9:1)導電率下降為0.44S/cm。表示當金屬鎳含量增加有助於提昇陽極材料Ni/YSZ金屬鎳與鎳晶粒之間之相互接觸點與連接處而增加其導電率。因此巨孔結構中, PMMA球以外的孔隙為Ni/YSZ之分佈,而Ni為NiO所還原而成,因此實際Ni體積在整體孔洞材料中體積佔20%,因此電子傳輸的路徑較傳統Ni/YSZ受到限制。
SOFC have many advantages such as higher efficiency, low pollution, no noise, etc among several advanced energy technologies. In the structure of SOFC, ordered porous structure will enhance the transport of gas and then facilitate the electrochemical reaction. In this study, the macroporous Ni/YSZ cermet were fabricated by using PMMA microspheres as a template and Ni(CH3COO)2 methanol solution as a nickel source. The monodisperse PMMA spheres were filled with NiO/YSZ precursor solution by impregnation method. Subsequently, NiO/YSZ with ordered and porous structure was obtained by removing the PMMA spheres followed heat treatment from 800oC to 1100oC. In this study, the effect of heat-treatment temperature and the reducing atmosphere on the macroporous structure of NiO/YSZ was discussed.
The result shows that the diameter of PMMA spheres were 0.15μm、0.3μm、0.5μm and 1μm which were fabricated successfully using emulsifier-free emulsion polymerization method. PMMA microspheres were used as the template of macroporous structure. According to the analysis of TG/DTA. The PMMA spheres had significant exothermic curve from 260oC to 380oC and apparent loss of weight at about 260oC. The loss of weight reached 100% at 380oC matched the results of DTA.
After calcining at 1100oC for 4 hours, the macroporous structure of NiO/YSZ collapsed due to the minimization of surface tension. However, the macroporous structure of NiO/YSZ remained stable at 1000oC. Due to the volume reduction accompanied the reduction of NiO into metallic Ni, the strength of macroporous Ni/YSZ is lower than its oxide counterpart. When using the PMMA spheres with diameter of 0.3μm and 0.5μm spheres as template, the 3-D ordered macroporoud structure with diameters of 0.15μm and 0.37μm was obtained. The BET specific surface area of macroporous Ni/YSZ with pore diameter of 0.15μm and 0.37μm was found to be 21.64m2/g and 15.32 m2/g.
Results of the methane reforming over the catalyst showed that the conversion increased with the operating temperature from 600oC to 900oC. The Ni/YSZ with the smaller pore size had the excellent methane conversion rate due to the catalyst on the support with the smaller pore size and large surface area. Thus, macroporous Ni/YSZ catalyst possessed higher activity. The methane conversion of anode Ni/YSZ fabricated from 300nm PMMA spheres achieved 79% at 900oC.
The metallic conductivity in Ni/YSZ cermet was increased with the vol.% of NiO to YSZ. From the results could observed that the vol.% of NiO to YSZ equal to 100%, the Ni/YSZ specimen exhibited a conductivity value 55.94 Scm-1 at room temperature improved the electrical property of 90vol.% NiO to YSZ was 0.44Scm-1. The nickel content in Ni/YSZ increased the contact point between the two neighboring grains or interconnectivity between the grains increased and it resulted in highering in the conductivity of the specimen. The pore occupied the space where actually nickel particles would have been to provide electron connection.
1. M. B. Kakade, S. Ramanathan, D. DAS, Ceramics International, 37, (2011), 195-200.
2. Xiaole Weng, Dan Brett, Vladimir Yufit, Pault Shearing, Nigel Brandon, Mike Reece, Haixue Yan, Chris Tighe, Jawwad A. Darr, Solid State Ionics, 181, (2010), 827-834.
3. Tahereh Talebi, Mohammad Hassan Sarrafi, Mohsen Haji, Babak Raissi, Amir Maghsoudipour, Hydrogen Energy, 35, (2010), 9440-9447.
4. T. Priyatham, Ranjit Bauri, Materials Characterization, 61, (2010),54-58.
5. Ryan M.C. Clemmer, Stephen F. Corbin, Solid State Ionics, 180, (2009),721-730.
6. Ji Haeng Yu, Gun Woo Park, Shiwoo Lee, Sang Kuk Woo, Power Source, 163, (2007), 926-932.
7. S.M. Klein, V.N. Manoharan, D.J. Pine, F.F. Lange,Colloid Polym. Sci.,282, (2003), 7-13.
8. EG&G Technical Services, Inc., Fuel Cell Handbook, vol.7, seventh edition, (2004), solid oxide fuel cell.
9. T. Fukui, S. Ohara, K. Mukai, Electrochem. Solid-State Lett. 1(3),(1988), 120-122.
10. L.Jia, Z. Liu, J. Miao, Z. Liu, G. Li, W. Su, J. , Alloys Compd. , 414,(2006) 152-157.
11. H.S. Hong, U.S. Chae, S.T. Choo, J. , Alloys Compd. , 499, (2008) 331-334.
12. S. Lee, K.H. Kang, H.S. Hong, Y. Yun, J.H. Ahn, J. , Alloys Compd. ,448, (2009), L1-L5.
13. J.J Choi, J. Ryu, B.D. Hahn, W.H. Yoon, B.K. Lee, J.H. Choi, D.S.Park, J. Alloys Compd. , (2009), doi:10.1016/j.jallcom.2009.11.146.
14. K.Thyden, Y.L. Liu. J.B. Bilde-Sorensen, Solid State Ionics, 178 (2008), 1984-1989.
15. H. Xiao, T.L. Reitz, M.A. Rottmayer, J. Power Sources 183, (2008),49-54.
16. F.J. Rorh, in : P. Hagenmuller, W. Vangool, (Eds.), Solid Electrolytes, Academic Press, New York, (1978), p.431.
17. F.J. Rorh, in : H.S. Isaacs, S. Srinivasan, I.L. Harry (Eds.), Proc.Workshop on High Temperature Solid Oxide Fuel Cells, Brookhaven National Laboratory, Upton, NY, (1978), p.122.
18. Y. Zhang, S. Zha, M. Liu, Adv. Mater., 4, (2005), 487.
19. K. Sasahara, T. Hyodo, Y. Shimizu, M. Egashira, Euro.Ceram. Soi.,24, (2004) 1961-1967.
20. Stephen F. Corbin, Ryan M. C. Clemmer, Am. Ceram. Soc., 92, [2], (2009)331-337.
21. Takehisa Fukui, Kenji Murata, Satoshi Ohara, Hiroya Abe, Makio Naito, Kiyoshi Nogi, Power Sources, 125, (2004), 17-21.
22. Daisuke Kamei, Hiroharu Ajiro, Chizuru Hongo, Mitsuru Akashi,Langmuir, 25, (2009), 280-285.
23. Dao-jun Yan, Xiang-kai Fu, Yong-feng Gong, Polymer Science, 26,[4], (2008), 375-380.
24. Juliana Aristeia de Lima, Maria Isabel Felisberti, Membrance Science,344, (2009), 237-243.
25. Ikuo Yanase, Yoichi Ishikawa, Shuzo Matsuura, Hidehiko Kobayashi,European Ceramic Society, 26, (2006), 475-479
26. Metin Tanoglu, Yelda Ergun, Composites, 38, (2007), 318-322.
27. Hernan Santa Cruz, Jose Spino, Georg Grathwohl, European Ceramic Society 28, (2008), 1783-1791.
28. Yuzhang Wang, Fumihiko Yoshiba, Makoto Kawase, Takao
Watannabe, Hydrogen Energy, 34, (2009), 3885-3893.
29. Jan Ilavsky, Judith K. Stalick, Surface and Coating Technology, 127,(2000), 120-129.
30. Y.H. Cho, M.S. Cho, H.J. Choi, M.S. Jhon, Colloid Polym Sci, 280,(2002), 1062-1066.
31. Metin Tanoglu, Yelda Ergun, Composites, 38, (2007), 318-322.
32. Marta Santiago, Johan C. Groen, Javier Perez-Ramirez, Catalysis,257,(2008), 152-162.
33. Sun-Dong Kim, Hwan Moon, Sang-Hoon Hyun, Jooho Moon, Joosun Kim, Hae-Weon Lee, Solid State Ionics, 178, (2007), 1304-1309.
34. Juan Carlos Ruiz-Morales, Jesus Canales-Vazquez, Juan
Pena-Martinez, David Marrero-Lopez, John T. S. Irvine, Pedro Nunez, Materials Chemistry, 16, (2006), 540-542.
35. 歐進祿, 國立中央大學,化學工程所,博士論文, (2001).
36. Ugelstad J., Berge A., Ellingsen T., Schemid R., Nilsen T.N., Mork P.C., Stenstad P., Hornes E, Olsvik O, Polym. Sci., 17, (1992), 87-161.
37. Dawkins J.V., Stone T., Yeadon G, Polymer, 18, (1977), 1179-1184.
38. D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J. J. Aklonis, R. Salovey, J.Polym. Sci. Part A: Polym. Chem., 30, (1992), 137.
39. J.V. Sanders, Nature, 204, (1964), 1151.
40. Xia Y., B. Gates, Y. Yin., Adv. Mater., 12, (2000), 693.
41. N. A. Clark, A. J. Hurd, B. J. Ackerson, Nature, 281, (1979), 57.
42. F. Mesequer, A. Blanco, H. Miguez, Colloids and Surf. A:Physicochem. Eng. Aspects, 282, (2002), 281.
43. H. Miguez, F. Meseguer, C. Lopez, Langmuir, 13, (1997), 6009.
44. H. Miguez, F. Meseguer, C. Lopez, Adv. Mater., 10, (1998), 480.
45. R. Magoral, J. Requena, J. S. Moya, Adv. Mater., 9, (1997), 257.
46. C.Lopez, L. Vazquez, F. Mesequer, Superlattices Microstruct., 22,(1997), 399.
47. P. Ni, P. Dong, B. Cheng, Adv. Master., 13, (2001), 437.
48. A. S. Dimitrov, K. Nagayama, Langmuir, 12, (1996), 1303.
49. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, Nature, 361, (1993), 26.
50. P. Jiang, J. F. Bertone, K. S. Hwang, Chem. Matter., 11, (1999), 2132.
51. Y.A. Vlasov, X. Z. Bo, J. C. Sturm, Nature, 414, (2001), 257.
52. J. D. Joannnopoulos, Nature, 414, (2001), 257.
53. Y. H. Ye, F. LeBlanc, A. Heche, Appl. Phys. Lett., 78, (2001), 52.
54. S. M. Klein, V. N. Manoharan, D. J. Pine, F. F. Lange, Colloid Polym. Sci., 282, (2003), 8.