簡易檢索 / 詳目顯示

研究生: 吳崇義
Wu, Chung-Yi
論文名稱: 被動式微流體混合器之研發
Development of Passive Microfluidic Mixing Devices
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 66
中文關鍵詞: 微型模造技術微型全分析系統被動式微混合器微流體
外文關鍵詞: micromolding, passive micromixer, microfluid, Micro Total Analysis Systems
相關次數: 點閱:118下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微型全分析系統(Micro Total Analysis Systems, mTAS)已經在單一晶片上發展出包含化學反應、分離和感測的多種分析程序,由於其針對生物化學分析的微小化與整合的特性,在近年來已經有相當大的進展。
    在微小化系統的整合中,微流體處理技術,例如:微流體輸送、計量與混合,為一相當重要的課題。對微流體系統而言,必須達成快速且有效的混合。微流體混合器的設計,除了考慮整合性,同時也要達到迅速混合的目的。本論文採用在主流道中置入數個J型阻塊的方式設計一新型被動式微混合器,並利用數值模擬與實驗探討此微混合器。而其平面式結構的製作方法是使用SU-8厚膜光阻來當作母模,並以PDMS為材料的微型模造技術。微流道測試實驗是在顯微鏡下拍攝流體的混合情形,運用影像分析軟體量測濃度分佈情形,經過測試的結果顯示,在雷諾數Re=5~50.1和Re=71.6~358,有J型阻塊的流道結構混合效果優於典型T型流道結構,主流道中的J型阻塊能產生側向對流效應,因此而改善了混合的效果。

    Micro Total Analysis Systems (mTAS) have been developed to undergo a number of analytical processes involving chemical reactions, separation and sensing all performed on a single chip. The mTAS research, which is aimed at biochemical analysis miniaturization and integration, has recently made dramatic progress.
    An important issue for this integration is microfluid management technique, i.e. microfluidic transportation, metering, and mixing. Effective mixing is essential to many of the microfluidic systems. The present work proposed a novel design of the passive micromixer which employed several J-shaped blocks in the main channel to enhance mixing. Both numerical and experimental investigations have been achieved in this study. The in-plane structured micromixer was fabricated using the micromolding of SU-8 photoresist and made of PDMS. The mixing performance has been demonstrated employing the image analyzing software to quantity the concentration distribution in the microchannel. The mixing efficiency of the micromixers with J-shaped blocks is better than that of the traditional T-shape mixer at Re= 5 to 50.1 and 71.6 to 358 according to the experimental results. The results reveal that the J-shaped blocks can cause the lateral convection in the main channel; therefore the mixing has been improved.

    摘 要 I ABSTRACT II 誌 謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 第一章 前言 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 被動式微流體混合器之研究架構 5 第二章 結構設計及數值模擬 7 2.1 理論基礎 7 2.2 數值方法 9 2.3 微型混合器結構建立 10 2.4 微型混合器流場數值模擬運算及結果分析 12 2.5 數值模擬結果分析 14 第三章 微流體混合器晶片製作 25 3.1 SU-8母模製作 26 3.2 PDMS流道晶片製作 33 3.3 晶片接合(Bonding)技術 37 第四章 微流道測試與實驗 40 4.1 微流道測試實驗平台建立 40 4.2 微流道測試實驗方法 42 第五章 結果與討論 45 5.1 T型結構微混合器與阻塊結構混合器的混合效果比較 45 5.2 在各種進口流速條件下的J型阻塊效應 53 第六章 結論與建議 60 6.1 結論 60 6.2 建議 62 參考文獻 63

    [1] M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, D. Heldsinger, C. H. Mastrangelo and D. T. Burke, “An Integrated Nanoliter DNA Analysis Device,” Science, 282, pp. 484-487, 1998.
    [2] S. Shoji and M. Esashi, “Microflow Devices and Systems,” J. Micromech. Microeng., 4, pp. 157-171, 1994.
    [3] R. Miyake, T. S. J. Lammerink, M. Elwenspoek and J. H. J. Fluitman, “Micro Mixer with Fast Diffusion,” in: Proceedings of the IEEE Micro Electro Mechanical Systems, Fort Lauderdale, U.S.A., pp. 248-253, 1993.
    [4] J. Branebjerg, P. Gravesen, J. P. Krog and C. R. Nielsen, “Fast Mixing by Lamination,” in: Proceedings of the IEEE Micro Electro Mechanical Systems, San Diego, U.S.A., pp. 441-446, 1996.
    [5] K.-P. Kamper, W. Ehrfeld, J. Dopper, V. Hessel, H. Lehr, H. Lowe, T.H. Richter and A. Wolf, “Microfluidic Components for Biological and Chemical Microreactors,” in: Proceedings of the IEEE Micro Electro Mechanical Systems, Nagoya, Japan, pp. 338-343, 1997.
    [6] H. Mobius, W. Ehrfeld, V. Hessel and Th. Richter, “Sensor Controlled Processes in Chemical Microreactors,” in: Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, Eurosensors IX., pp. 775-778, 1995.
    [7] J. Evans, D. Liepmann and A. P. Pisano, “Planar Laminar Mixer,” in: Proceedings of the IEEE Micro Electro Mechanical Systems, Nagoya, Japan, pp. 96-101, 1997.
    [8] R. M. Moroney, R. M. White and R. T. Howe, “Ultrasonic Induced Microtransport,” in: Proceedings of the IEEE Micro Electro Mechanical Systems, Nara, Japan, pp. 277-282, 1991.
    [9] S. Böhm, K. Greiner, S. Schlautmann, S. de Vries and A. van den Berg, “A Rapid Vortex Micromixer for Studying High-Speed Chemical Reactions,” in: Proceedings of the m-TAS 2001 Symposium, California, U.S.A., pp. 25-27, 2001.
    [10] M. H. Oddy, J. G. Santiago and J. C. Mikkelsen, “Electrokinetic Instability Micromixers,” in: Proceedings of the m-TAS 2001 Symposium, California, U.S.A., pp. 34-36, 2001.
    [11] R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref and D. J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” J. MEMS, 9, 2, pp. 190-197, 2000.
    [12] C. C. Hong, J. W. Choi and C. H. Ahn, “A Novel in-plane Passive Micromixer Using Coanda Effect,” in: Proceedings of the m-TAS 2001 Symposium, California, U.S.A., pp. 31-33, 2001.
    [13] R. H. Liu, M. Ward, J. Bonanno, D. Ganser, M. Athavale and P. Grodzinski, “Plastic in-line Chaotic Micromixer for Biological Applications,” in: Proceedings of the m-TAS 2001 Symposium, California, U.S.A., pp. 163-164, 2001.
    [14] H. Aref, “Stirring by Chaotic Advection,” J. Fluid Mech., 143, pp. 1-21, 1984.
    [15] C. P. Jen, C. Y. Wu, Y. C. Lin and C. Y. Wu, “Design and Simulation of the Micromixer with Chaotic Advection in Twisted Microchannels,” Lab on a Chip, 3, pp. 77-81, 2003.
    [16] J. M. Ottino, “The Kinematics of Mixing: Stretching, Chaos, and Transport,” Cambridge University Press, New York, 1989.
    [17] N. Acharya, M. Sen and H. C. Chang, “Heat Transfer Enhancement in Coiled Tubes by Chaotic Mixing,” Int. J. Heat Mass Transfer., 35, pp. 2475-2489, 1992.
    [18] A. Mokrani, C. Castelain and H. Peerhossaini, “The Effect of Chaotic Advection on Heat Transfer,” Int. J. Heat Mass Transfer., 40, pp. 3089-3104, 1997.
    [19] D. Sawyers, M. Sen and H. C. Chang, “Effect of Chaotic Interfacial Stretching on Biomolecular Chemical Reaction in Helical-Coil Reactors,” Chem. Eng. J., 64, pp. 129-139, 1996.
    [20] S. W. Jones, O. M. Thomas and H. Aref, “Chaotic Advection by Lamina Flow in a Twisted Pipe,” J. Fluid Mech., 209, pp. 335-357, 1989.
    [21] M. Volpert, C. D. Meinhart, I. Mezic and M. Dahelh, “An Actively Controlled Micromixer,” in: Proceedings of MEMS ASME IMECE, Nashville, Tennessee, pp. 483-487, 1999.
    [22] Y. K. Lee, J. Deval, P. Tabeling and C. M. Ho, “Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows,” in: Proceedings of the IEEE Micro Electro Mechanical Systems, Interlaken, Switzerland, pp. 483-486, 2001.
    [23] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” John Wiley & Sons Inc., New York, 1960.
    [24] D. Gobby, P. Angeli and A. Gavriilidis, “Mixing Characteristics of T-type Microfluidic mixers,” J. Micromech. Microeng., 11, pp. 126-132, 2001.
    [25] B. H. Jo, L. M. Van Lerberghe, K. M. Motsegood and D. J. Beebe, “Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer,” J. MEMS, 9, 1, pp. 76-81, 2000.
    [26] 楊啟榮, 羅國軒, 黃奇聲, 強玲英, “SU-8厚膜光阻於微系統UV-LIGA製程的應用,” 科儀新知, 20, 5, pp. 45-56, 1999.
    [27] Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50 & 100, released by MICRO-CHEM. Corp.
    [28] W. A. Cady and M. Varadarajan, “RCA Clean Replacement,” J. Electrochem. Soc., 143, 6, pp. 2064-2067, 1996.
    [29] M. J. Owen and P. J. Smith, “Plasma Treatment of Polydimethylsiloxane,” Polymer Surface Modification: Relevance to Adhesion, pp.3-15, 1995.
    [30] A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone and G. M. Whitesides, “Chaotic Mixer for Microchannels,” Science, 295, pp. 647-651, 2002.
    [31] X. F. Peng and G. P. Peterson, “Frictional Flow Characteristics of Water Flowing through Rectangular Microchannels,” Exp. Heat Transfer, 7, pp. 249-264, 1994.

    下載圖示 校內:立即公開
    校外:2003-09-03公開
    QR CODE