簡易檢索 / 詳目顯示

研究生: 吳乃賢
Wu, Nai-Hsien
論文名稱: 呼吸式金屬雙極板燃料電池之鈑件成型性與性能檢測
Formability and Performance Testing of Stainless Steel Bipolar Plate for Air-breathing PEMFC
指導教授: 王振源
Wang, Chen-Yuan
賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 142
中文關鍵詞: 質子交換膜燃料電池呼吸式燃料電池不銹鋼雙極板DYNAFORM電化學頻譜分析
外文關鍵詞: Proton exchange membrane fuel cell, Air-breathing fuel cell, Stainless steel bipolar plate, DYNAFORM, Electrochemical impedance spectroscopy
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在針對透過有限元素模擬分析與鈑件尺寸實測開發質子交換膜燃料電池之金屬雙極板。經由DYNAFORM模擬軟體與LS-DYNA求解分析探討流道幾何參數與沖壓參數對金屬雙極板沖壓成型性之影響,利用成型極限、變薄率與回彈量等鈑件特性找出設計與製程最佳參數。另外亦組裝呼吸式單電池,透過極化曲線與電化學頻譜分析進行電池性能實測,以驗證此雙極板之可行性。
    本研究成功利用沖壓製程開發一SS316L雙極板之呼吸式燃料電池,此電池之雙極板外尺寸為150×54 mm2。在電池操作溫度45℃、鎖附扭矩30 kgf-cm、氫氣計量比1.5、陽極提供100%相對濕度及陰極提供強制對流之操作條件下,最大功率密度可達187.19 mW/cm2。另外在模擬結果顯示,吾人所設計之不銹鋼316L雙極板最佳成型之參數為:流道深度0.8 mm、模具圓角半徑0.4 mm、沖壓速度250 mm/s、鈑件厚度0.2 mm及壓料板壓力200 kN。此外流道深度增加,對變薄率與回彈量皆會提升;模具圓角半徑增加,可使變薄率與回彈量下降;沖壓製程中加裝壓料板則後可大幅度改善回彈量。實際鈑件流道深度量測中,最大誤差為12.8%。

    This study aims to develop the metallic bipolar plate for proton exchange membrane fuel cell. The DYNAFORM software and LS-DYNA are used to study the effects of flow channel geometry and stamping parameter on the formaility of the metallic bipolar plate. The forming limit, thinning ratio and springback of the bipolar plates under various conditions are analyzed to obtain the optimum design and process parameters. An air-breathing single cell is as well assembled and tested via the polarization curve and electrochemical impedance spectroscopy methods to verify the practicability of the bipolar plate.
    An air-breathing single cell with the stamped SS316L bipolar plates of 150×54 mm2 is successfully developed in this work. The maximum power density, 187.19 mW/cm2, is measured with a forced air convection at an operating temperature of 45℃, a torque of 30 kgf-cm, a hydrogen stoichiometric ratio of 1.5 and a relative humidity of 100%. As for the fabrication process of the metallic bipolar plate, the simulation results show that the optimum stamping parameters for the SS316L are the flow channel depth of 0.8 mm, punch and die radius of 0.4 mm, stamping speed of 250 mm/s, blank thickness of 0.2 mm and the binder pressure of 200 kN. In addition, thinning ratio and springback both increase with increasing the depth of flow channel, or decreasing the punch and die radius. Adding binders in the stamping process significant reduces the springback of the metallic bipolar plate. Moreover, the maximum error between the real flow channel depth and the design depth is 12.8%.

    中文摘要 I Formability and Performance Testing of Stainless Steel Bipolar Plate for Air-btrathing PEMFC II 誌謝 V 目 錄 VI 表目錄 X 圖目錄 XI 符號說明 XVI 第 1 章 緒論 1 1-1前言 1 1-2質子交換膜燃料電池簡介 5 1-3質子交換膜燃料電池工作原理 9 1-4研究動機 10 1-5研究目的 11 第 2 章 文獻回顧 13 2-1金屬雙極板材料 13 2-2金屬雙極板成型 20 2-3雙極板鍍層 27 2-4雙極板模擬分析 31 2-5燃料電池堆設計與組裝 34 2-6呼吸式燃料電池 40 第 3 章 實驗設備 45 3-1燃料電池測試機台 45 3-2恆電位電流儀 46 3-3燃料供應系統 47 3-4電池加熱系統 48 3-5掃描式電子顯微鏡 49 3-6呼吸式金屬雙極板單電池 51 3-6-1 膜電極組 54 3-6-2 不銹鋼雙極板 54 3-6-3 集電板 56 3-6-4 端板 56 第 4 章 研究方法 58 4-1 DYNAFORM簡介 58 4-2 DYNAFORM統御方程式 63 4-3成型極限圖 68 4-4極化曲線 72 4-4-1 活化極化 73 4-4-2 歐姆極化 75 4-4-3 濃度極化 76 4-5電化學阻抗頻譜分析 78 第 5 章 結果與討論 83 5-1 DYNAFORM模擬設定 83 5-1-1網格收斂性 84 5-1-2流道深度對沖壓成型性之影響 87 5-1-3模具圓角半徑對沖壓成型性之影響 94 5-1-4沖壓速度對沖壓成型性之影響 96 5-1-5鈑件厚度對沖壓成型性之影響 98 5-1-6壓料板壓力對沖壓成型性之影響 101 5-1-7鈑件成型性驗證分析 105 5-2金屬雙極板之單電池性能測試 109 5-2-1鎖附扭矩對單電池性能之影響 110 5-2-2氫氣計量比對單電池性能之影響 116 5-2-3露點溫度對單電池性能之影響 118 5-2-4相對濕度對單電池性能之影響 119 5-2-5風扇電壓對單電池性能之影響 121 5-2-6電池操作溫度對單電池性能之影響 123 第 6 章 結論 127 未來工作 129 參考文獻 130

    [1] https://ssl.toyota.com/mirai/fcv.html
    [2] https://www.hyundaiusa.com/nexo/index.aspx
    [3] https://automobiles.honda.com/clarity-fuel-cell
    [4] http://www.ballard.com/docs/default-source/backup-power-documents/fcgen-1020acs.pdf?sfvrsn=2
    [5] https://www.intelligent-energy.com/uploads/product_docs/650W_datasheet_UjI3z0X.pdf
    [6] https://www.horizonfuelcell.com/h-series-stacks
    [7] S. Barrett, “Horizon launches Hycopter fuel cell multirotor UAV,” Fuels Cells Bulletin, Vol.2015, pp.4, 2015
    [8] http://www.china-hydrogen.org/fuelcell/mix/2018-12-12/8853.html
    [9] https://www.bsharktech.com/
    [10] X.Z. Yuan, H. Wang, J. Zhang, D. P. Wilkinson, “Bipolar Plates for PEM Fuel Cells - From Materials to Processing,” Journal of New Materials for Electrochemical Systems, Vol.8, pp.257-267, 2005.
    [11] 陳震宇, “溫度與溼度對PBI/H3PO4燃料電池特性影響之研究,” 國立成功大學航空太空工程學系博士論文, 2010年。
    [12] D. Ryan, J. Shang, C. Quillivic, B. Porter, “Performance and energy efficiency testing of a lightweight FCEV hybrid vehicle.” European Electric Vehicle Congress, Brussels, Belgium, 2014.
    [13] K. Ikeya, K. Hirota, Y. Takada, T. Eguchi, K. Mizutani, T. Ohta, “Development and evaluation of air-cooled fuel cell scooter.” JSAE, 2011.
    [14] R.K. Ahluwalia, X. Wang, K. Tajiri, R. Kumar, “Fuel cell systems analysis.” DOE Hydrogen Program Report, 2009.
    [15] Y. Yang, “PEM fuel cell system manufacturing cost analysis for automotive applications.” Austin Power Engineering LLC, 2015.
    [16] H. Wang, J.A. Turner, “Reviewing Metallic PEMFC Bipolar Plates. Fuel Cells,” International Journal of Hydrogen Energy, Vol.10, pp.510-519, 2010.
    [17] D.P. Davies, P.L. Adcock, M. Turpin, S.J. Rowen, “Bipolar plate materials for solid polymer fuel cells,” Journal of Applied Electrochemistry, Vol.30, pp. 101-105, 2000.
    [18] H. Wang, M.A. Sweikart, J.A. Turner, “Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 115, pp. 243-251, 2003.
    [19] H. Wang, J.A. Turner, “Ferritic stainless steels as bipolar plate material for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol.128, pp.193-200, 2004.
    [20] V.V. Nikam, R.G. Reddy, S.R. Collins,P.C. Williams, G.H. Schiroky, G.W. Henrich, “Corrosion resistant low temperature carburized SS 316 as bipolar plate material for PEMFC application,” Electrochimica Acta, Vol.53, pp.2743-2750, 2008.
    [21] M. Kumagai, S.T. Myung, T. Ichikawa, H. Yashiro, “Applicability of extra low interstitials ferritic stainless steels for bipolar plates of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 195, pp.7181-7186, 2010.
    [22] C.Y. Bai, T.M. Wen, M.S. Huang, K.H. Hou, M.D. Ger, S.J. Lee, “Surface modification and performance of inexpensive Fe-based bipolar plates for proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 195, pp.5686-5691, 2010.
    [23] R.C. Makkus, A.H.H. Janssen, F.A.D. Bruijn, R.K.A.M. Mallant, “Use of stainless steel for cost competitive bipolar plates in the SPFC,” Journal of Power Sources, Vol.86, pp.274-282, 2000.
    [24] M.P. Brady, M.A. Elhamid, G. Dadheech, J. Bradley, T.J. Toops, H.M. Meyer III, P.F. Tortorelli, “Manufacturing and performance assessment of stamped, laser welded, and nitrided FeCrV stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 38, pp.4734-4739, 2013.
    [25] S. Rajasekar, R. Chetty, L. Neelakantan, “Low-nickel austenitic stainless steel as an alternative to 316L bipolar plate for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 40, pp.12413-12423, 2015.
    [26] 洪舜浩,“燃料電池不鏽鋼雙極板之成型性與接觸阻抗之研究,”國立成功大學航空太空工程研究所碩士論文, 2015年.
    [27] S. Shimpalee, V. Lilavivat, H. McCrabb, Y. Khunatorn, H.-K. Lee, W.-K. Lee, J.W. Weidner, “Investigation of bipolar plate materials for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 41, pp.13688-13696, 2016.
    [28] 劉孟翰,“不銹鋼雙極板燃料電池堆設計及其性能研究,”國立成功大學航空太空工程研究所碩士論文, 2016年.
    [29] M. Kim, J.W. Lim, D.G. Lee, “Electrical contact resistance between anode and cathode bipolar plates with respect to surface conditions,” Composite Structures, Vol.189, pp.79-86, 2018.
    [30] F.A. Khatir, M. Elyasi, H.T. Ghadikolaee, M. Hosseinzadeh, “Evaluation of effective parameters on stamping of metallic bipolar plates,” Procedia Engineering, Vol. 183, pp.322-329, 2017.
    [31] C.K. Jin , J.Y. Koo , C.G. Kang, “Fabrication of stainless steel bipolar plates for fuel cells using dynamic loads for the stamping process and performance evaluation of a single cell,” International journal of hydrogen energy, Vol.39, pp.21461-21469, 2014.
    [32] Y. Liu, L. Hua, “Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming,” Journal of Power Sources, Vol. 195, pp.3529-3535, 2010.
    [33] M.G. Jeong, C.K. Jin, G.W. Hwang, C.G. Kang, “Formability Evaluation of Stainless Steel Bipolar Plate Considering Draft Angle of Die and Process Parameters by Rubber Forming,” International Journal of Precision Engineering and Manufacturing, Vol.15, pp.913-919,2014.
    [34] M.G. Jung, Y.P. Jeon, C.G. Kang, “Metallic Bipolar Plate Fabrication Process of Fuel Cell by Rubber Pad Forming and its Performance Evaluation,” Key Engineering Materials, Vols.535-536, pp.310-313, 2013.
    [35] C.K. Jin, K.H. Lee, C. G. Kang, “Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process,” International Journal of Hydrogen Energy, Vol.40, pp.6681-6688, 2015.
    [36] S. Mahabunphachai, Ö.N. Cora, M. Koç, “Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates,” Journal of Power Sources, Vol.195, pp.5269 -5277, 2010.
    [37] C. Turan, Ö.N. Cora, M. Koç, “Effect of manufacturing processes on contact resistance characteristics of metallic bipolar plates in PEM fuel cells,” International Journal of Hydrogen Energy, Vol.36, pp.12370-12380, 2011.
    [38] P. Yi, L. Peng, L. Feng, P. Gan, X. Lai, “Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates,” Journal of Power Sources, Vol. 195, pp.7061-7066, 2010.
    [39] L. Peng, P. Yi, X. Lai, “Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 39, pp. 21127-21153, 2014.
    [40] F. Dundar, E. Dur, M. Mahabunphachai, M. Koç, “Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates,” International Journal of Power Sources, Vol. 195, pp. 3546-3552, 2010
    [41] A. Kraytsberg, M. Auinat, Y. E. Eli, “Reduced contact resistance of PEM fuel cell’s bipolar plates via surface texturing,” Journal of Power Sources, Vol.164, pp.697-703, 2007.
    [42] L. Peng, P. Hu, X. Lai, D. Mei, J. Ni, “Investigation of micro/meso sheet soft punch stamping process – simulation and experiments,” Materials and Design, Vol.30, pp.783-790, 2009.
    [43] Y. Liu, L. Hua, J. Lan, X. Wei, “Studies of the deformation styles of the rubber-pad forming process used for maufacturing metallic bipolar plates,” Journal of Power Sources, Vol. 195, pp.8177-8184, 2010.
    [44] E. Dur, Ö.N. Cora, M. Koç, “Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates,” Journal of Power Sources, Vol. 246, pp.788-799, 2014.
    [45] C.H. Lin, “Surface roughness effect on the metallic bipolar plates of a proton exchange membrane fuel cell,” Applied Energy, Vol. 104, pp.898-904, 2013.
    [46] J. Wind, R. Späh, W. Kaiser, G. Bӧhm, C.G. Kang, “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol.105, pp.256-260, 2002.
    [47] M. Li, S. Luo, C. Zeng, J. Shen, H. Lin, C. Cao, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corrosion Science, Vol.46, pp.1369-1380, 2004.
    [48] S.H. Wang, J. Peng, W.B. Lui, J.S. Zhang, “Performance of the gold-plated titanium bipolar plates for the light weight PEM fuel cells,” Journal of Power Sources, Vol. 162, pp.486-491, 2006.
    [49] W. Yoon, X. Huang, P. Fazzino, K.L. Reifsnider, M.A. Akkaoui, “Evaluation of coated metallic bipolar plates for polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 179, pp.265-273, 2008.
    [50] K. Feng, X. Cai, H. Sun, Z. Li, P.K. Chu, “Carbon coated stainless steel bipolar plates in polymer electrolyte membrane fuel cells,” Diamond & Related Materials, Vol.19, pp.1354-1361, 2010.
    [51] D. Zhang, L. Duan, L. Guo, Z. Wanga, J. Zhao, W.H. Tuan, K. Niihara, “TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating,” International Journal of Hydrogen Energy, Vol. 36, pp.9155-9161, 2011
    [52] M.F. Peker, Ö.N. Cora, M. Koç, “Investigations on the variation of corrosion and contact resistance characteristics of metallic bipolar plates manufactured under long-run conditions,” International Journal of Power Sources, Vol. 36, pp.15427-15436, 2011.
    [53] R. Tian, “Chromium nitride/Cr coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 196, pp.1258-1263, 2011.
    [54] R. Tian, J. Sun, “Corrosion resistance and interfacial contact resistance of TiN coated 316L bipolar plates for proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, Vol.36, pp.6788-6794, 2011.
    [55] H. Zhang, G. Lin, M. Hou, L. Huc, Z. Han, Y. Fu, Z. Shao, B. Yi, “CrN/Cr multilayer coating on 316L stainless steel as bipolar plates for proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 198, pp.176-181, 2012.
    [56] W.Y. Ho, C.H. Yang, W.C. Huang, W.Y. Ho, “Corrosion Resistance and Electrical Conductivity of TiN/CrN Multilayer Coated Stainless Steel,” Advanced Materials Research, Vol. 214, pp.214-295, 2011.
    [57] M.M. Sisan, M.A. Sereshki, H. Khorsand, M.H. Siadati, “Carbon coating for corrosion protection of SS-316L and AA-6061 as bipolar plates of PEM fuel cells,” Journal of Alloys and Compounds, Vol. 613, pp.288-291, 2014.
    [58] K. Lin, X. Li, H. Dong, S. Du, Y. Lu, X. Ji, D. Gu,“Surface modification of 316 stainless steel with platinum for the application of bipolar plates in high performance proton exchange membrane fuel cells ,” International Journal of Hydrogen Energy, Volume 42, pp.2338-2348 , 2017.
    [59] S. Wang, M. Hou, Q. Zhao, Y. Jiang, Z. Wang, H. Li, Y. Fu, Z. Shao, “Ti/(Ti,Cr)N/CrN multilayer coated 316L stainless steel by arc ion plating as bipolar plates for proton exchange membrane fuel cells,” Journal of Energy Chemistry, Vol.26, pp.168-174, 2017.
    [60] ]L.M. Yu, X. Chen, Y. Yang, “The Stamping Process Simulation of Plate Using CAE Technology,” Advanced Materials Research, Vols.538-541, pp.901-904, 2012.
    [61] L. Peng, X. Lai, D. Liu, P. Hu, J. Ni, “Flow channel shape optimum design for hydroformed metal bipolar plate in PEM fuel cell,” Journal of Power Sources, Vol.178, pp.223-230, 2008.
    [62] S. Xu, K. Li, Y. Wei, W. Jiang, “Numerical investigation of formed residual stresses and the thickness of stainless steel bipolar plate in PEMFC,” International journal of hydrogen energy, Vol.41, pp.6855-6863, 2016.
    [63] 蕭逸宏,“應用田口法於燃料電池金屬雙極板沖壓成型研究,”國立成功大學航空太空工程研究所碩士論文, 2014年.
    [64] T.L. Smith, A.D. Santamaria, J.W. Park, K. Yamazaki, “Alloy selection and die design for stamped Proton Exchange Membrane Fuel Cell (PEMFC) bipolar plates,” Procedia CIRP, Vol. 14, pp.275-280, 2014.
    [65] Q. Hu, D. Zhang, H. Fu, K.K. Huang, “Investigation of Stamping Process of Metallic Bipolar Plates in PEM Fuel Cell-Numerical Simulation and Experiments,” International Journal of Hydrogen Energy, Vol.39, pp.13770 -13776, 2014.
    [66] Q. Hu, D. Zhang, H. Fu,“Effect of flow-field dimensions on the formability of Fe-Ni-Cr alloy as bioplar for PEM (proton exchange membrane) fuel cell, ”Energy, Vol. 83, pp.156-163, 2015.
    [67] 黃植葳,“燃料電池不銹鋼雙極板之成型性與流道設計,”國立成功大學航空太空工程研究所碩士論文, 2016年.
    [68] E.A. Cho, U.S. Jeon, S.A. Hong, I.H. Oh, S.G. Kang, “Performance of a 1KW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates,” Journal of Power Sources, Vol.142, pp.177-183, 2005.
    [69] T. Matsuura, M. Kato, M. Hori, “Study on metallic bipolar plate for proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 161, pp.74-78, 2006.
    [70] S. Shimpalee, S. Greenway, J.W.V. Zee, “The impact of channel path length on PEMFC flow-field design,” Journal of Power Sources, Vol. 160, pp.398-406, 2006.
    [71] X. Li, I. Sabir, “Review of bipolar plates in PEM fuel cells: Flow-field designs,” International Journal of Hydrogen Energy, Vol. 30, pp.359-371, 2005.
    [72] D. Liu, L. Peng, X. Lai, “Effect of assembly error of bipolar plate on the contact pressure distribution and stress failure of membrane electrode assembly in proton exchange membrane fuel cell,” Journal of Power Sources, Vol.195, pp.4213-4221, 2010.
    [73] C.W. Lin, C.H. Chien, J. Tan, Y.J. Chao, J.W.V. Zee, “Chemical degradation of five elastomeric seal materials in a simulated and an accelerated PEM fuel cell environment,” Journal of Power Sources, Vol. 196, pp.1955-1966, 2011.
    [74] R. Boddu, U. K. Marupakula, B. Summers, P. Majumdar, “Development of bipolar plates with different flow channel configurations for fuel cells,” Journal of Power Sources, Vol. 189, pp.1083-1092, 2009.
    [75] D. Qiu, P. Yi, L. Peng, X. Lai, “Study on shape error effect of metallic bipolar plate on the GDL contact pressure distribution in proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, Vol. 38, pp.6762-6772, 2013.
    [76] D.H. Ye, Z.G. Zhan, “A review on the sealing structures of membrane electrode assembly of proton exchange membrane fuel cells,” Journal of Power Sources, Vol. 231, pp.285-292, 2013.
    [77] D. Qiu, P. Yi, L. Peng, X. Lai, “Assembly design of proton exchange membrane fuel cell stack with stamped metallic bipolar plates,” International Journal of Hydrogen Energy, Volume 40, pp.11559-11568 , 2015.
    [78] E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack,” International Journal of Hydrogen Energy, Vol. 41, pp.3062-3071, 2016.
    [79] W. Ying, J. Ke, W.Y. Lee, T.H. Yang, C.S. Kim, “Effects of cathode channel configurations on the performance of an air-breathing PEMFC ,” International Journal of Hydrogen Energy, Volume 30, pp.1351-1361, 2005
    [80] B. Kim, Y. Lee, A. Woo, Y. Kim, “Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs,” Applied Energy, Volume 111, pp.441-448, 2013.
    [81] N. Bussayajarn, H. Ming, K.K. Hoong, W.Y.M. Stephen,C.S. Hwa, “Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications ,” International Journal of Hydrogen Energy, Volume 34, pp.7761-7767, 2009.
    [82] P.M. Kumar, V. Parthasarathy, “A passive method of water management for an air-breathing proton exchange membrane fuel cell,” Energy, Volume 51, pp.457-461, 2013.
    [83] M. Kim, D.G. Lee, “Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding,” Journal of Power Sources, Vol. 315, pp. 86-95, 2016.
    [84] S.P. Isanakaa, T.E. Sparksa, F.F. Lioua, J.W. Newkirk, “Design strategy for reducing manufacturing and assembly complexity of air-breathing Proton Exchange Membrane Fuel Cells (PEMFC),” Journal of Manufacturing Systems, Vol. 38, pp. 165-171, 2016
    [85] T.J.R. Hughes, W.K. Liu, “Nonlinear finite element analysis of shells-part II.two-dimensional shells,” Computer Methods in Applied Mechanics and Engineerimg, Vol.27, pp.167-181, 1981.
    [86] T. Belytschko, C.S. Tsay, “Explicit algorithms for nonlinear dynamics of shells,” Applied Mechanics Division, Vol.48, pp.209-231, 1981.
    [87] T. Belytschko, C.S. Tsay, “A stabilization procedure for the quadrilateral plate element with one-point quadrature,” International Journal for Numerical Methods in Engineering, Vol.19, pp.405-419, 1983.
    [88] B.E. Englemann, R.G. Whirley, G.L. Goudreau, “A simple shell element formulation for large-scale elastoplastic analysis,” Structural Mechanics Tech Conference, 1989.
    [89] P.C. Galbraith, J.O. Hallquist, “Shell-element formulations in LS-DYNA3D : their use in the modelling of sheet-metal forming,” Journal of Materials Processing Technology, Vol.50, pp.158-167,1995.
    [90] M. Firat, “Computer aided analysis and design of sheet metal forming processes: Part I – The finite element modeling concepts,” Materials & Design, Vol.28, pp.1298-1303, 2007.
    [91] Hallquist, John O. LS-DYNA® THEORY MANUAL. 7374 Las Positas Road Livermore, California 94551: Livermore Software Technology Corporation; 2006.
    [92] S.P. Keeler, W.A. Backofen, “Plastic instability and fracture in sheets stretched over rigid punches”, ASM Transactions Quarterly, Vol. 56, pp.25-48, 1963.
    [93] G.M. Goodwin, “Application of strain analysis to sheet metal forming problems in press shop”, SAE, 1968.
    [94] A.S. Kornonen, ”On the Theories of sheet Metal Necking and Forming Limits” Journal Engineering Materials and Technology, Vol.100, pp.303-309, 1978.
    [95] Z. Marciniak, J.L. Duncan, S.J. Hu. “Mechanics of Sheet Metal Forming, 2th Edition,” 2002.
    [96] EG&G Services Parsons, Inc. “Fuel Cell Handbook, 6th Edition,” 2002.
    [97] W.H. Zhu, R.U. Payne, B.J. Tatarchuk, “PEM stack test and analysis in a power system at operational load via ac impedance,” Journal of Power Sources, Vol. 168, pp. 211-217, 2007.

    無法下載圖示 校內:2024-05-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE