簡易檢索 / 詳目顯示

研究生: 黃鈺琄
Huang, Yu-Chuan
論文名稱: 探討microRNA-137基因的甲基化在大腸直腸癌生成過程中的臨床意義及其下游調控機制
Studying the clinical significance and downstream regulatory mechanism of epigenetic silenced microRNA-137 in colorectal carcinogenesis
指導教授: 洪良宜
Hung, Liang-Yi
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 116
中文關鍵詞: miR-137Aurora-A大腸瘜肉大腸直腸癌甲基化
外文關鍵詞: miR-137, Aurora-A, colon polyp, colorectal cancer, methylation
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MicroRNA是近年來重要的發現,調控許多基因,異常表現可能導致癌症。在各類型癌症中,包括大腸直腸癌,已知microRNA-137 (miR-137) 都是扮演腫瘤抑制因子的角色;但是,miR-137在大腸直腸癌中所參與的功能,或為早期癌症病人治療和預後的生物指標仍未被探究。在本研究中,我們證實了人類大腸直腸癌組織和大腸瘜肉中miR-137都不表現,是由於其啟動子區被甲基化所致。我們發現大腸直腸癌的癌化過程中,Aurora-A, PTGS2, CDK6 和 CDC42這些致癌基因參與其中,皆為miR-137的目標基因。大量表現 miR-137,使得Aurora-A, PTGS2, CDK6 和 CDC42的mRNA,protein以及luciferase activity表現量皆下降。分析人類大腸直腸癌和瘜肉檢體,發現Aurora-A或 PTGS2的表現,與miR-137的表現,呈現負相關。重要的是,miR-137在不同類型的大腸瘜肉中表現量下降的不同,與造成後續癌症的產生具有潛在意義。藉由receiver operating characteristic (ROC)曲線分析,大腸瘜肉檢體miR-137的表現量下降與Aurora-A或 PTGS2的過量表現,可作為預測是否罹患大腸直腸癌的生物指標。在大腸直腸癌細胞株中大量表現miR-137,會抑制細胞生長,箝制在G2/M期,最後造成細胞凋亡;這些現象皆可再以外送大量表現Aurora-A而中止。異體移植動物模式中,也證實了miR-137大量表現時會抑制腫瘤生長,使癌細胞走向凋亡。在Azoxymethane/ dextran sodium sulfate (AOM/DSS)小鼠大腸直腸癌模式中,我們也發現以甲基轉移酶抑制劑Decitabine治療,可抑制腫瘤產生和浸潤。由我們的研究得知,大腸瘜肉中miR-137表現量下降的情況可作為早期預測是否罹患大腸直腸癌的生物指標。miR-137抑制Aurora-A的調控機制可作為大腸直腸癌的早期預測或未來癌症治療的新亮點。

    MicroRNAs constitute a new class of gene expression regulators that express aberrantly in cancer. MiR-137 acts as a tumor suppressor in many kinds of cancers, including colorectal cancer (CRC). However, the functional roles of miR-137 and its possibility to serve as a biomarker for clinical outcome in CRC remain largely unclear. Our study indicated that miR-137 silences in human CRC tissues and colon polyps owing to the methylation of the miR-137 promoter region. Several oncogenes involved in the carcinogenesis of CRC, including Aurora-A, PTGS2, CDK6 and CDC42, are the targets of miR-137. The expression pattern of miR-137 and Aurora-A or PTGS2 is negatively correlated in human CRC tissues and colon polyps. Importantly, the decreased expression level of miR-137 is significantly different in various types of polyps that maintain different potentials to lead to the development of CRC. In a receiver operating characteristic (ROC) curve analysis, loss of miR-137 expression as well as overexpressed Aurora-A or PTGS2 in colon polyps can serve as a biomarker to predict a predisposition for colorectal carcinogenesis. Enforcing expression of miR-137 in CRC cells and in a xenograft animal model can result in the reduction of cell proliferation and tumor formation, G2/M arrest, and finally lead to apoptosis. Additionally, Azoxymethane/dextran sodium sulfate (AOM/DSS)-induced CRC can be restored by Decitabine treatment. Taken together, our study suggests that epigenetic silencing of miR-137 in colon polyps can serve as a biomarker to predict a tendency towards CRC formation through the impaired inhibitory effect of Aurora-A. The investigation of the regulatory mechanism of miR-137-mediated Aurora-A inhibition may shed new light on early prognosis or cancer therapy for CRC in the future.

    Abstract in Chinese I Abstract II Acknowledgement III Table of Contents V Figure Index IX Table Index XII Abbreviation XIII A. Introduction 1 1. Colorectal cancer (CRC) 1 1-1. Carcinogenesis of CRC 1 1-2. Therapy in CRC 2 2. MicroRNA (miRNA) 3 2-1. An overview of miRNA 3 2-2. MicroRNA-25 (miR-25) 5 2-3. MicroRNA-137 (miR-137) 5 3. Aurora kinase A (Aurora-A) 7 3-1. Aurora kinase family 7 3-2. The role of Aurora-A 8 3-3. Aurora-A in cancer 9 4. Research significance 10 B. Materials and methods 11 1. Materials 11 2. Methods 16 2-1. Cell Culture and Treatments 16 2-2. 3’-UTR Luciferase reporter assay 17 2-3. Samples of clinical specimens 17 2-4. Reverse Transcription (RT) and Quantitative Polymerase Chain Reaction (Q-PCR) 17 2-5. Methylation-specific Polymerase Chain Reaction (MSP) 19 2-6. Quantitative Bisulfite Pyrosequencing 19 2-7. Western blot analysis 20 2-8. Immunofluorescence assay 21 2-9. Flow cytometry analysis 21 2-10. Cell proliferation assay 22 2-11. Xenograft animal studies 22 2-12. Immunohistochemistry staining 23 2-13. Colitis-Associated Cancer with Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS) murine model 23 C. Results 24 1. The expression of miR-137 is decreased in human colorectal cancer cells and colon polyps. 24 1-1. MiR-137 is significantly downregulated in human colorectal cancer cells. 24 1-2. MiR-137 is significantly downregulated in human colon polyps. 24 2. MiR-137 is epigenetically silenced in human colorectal cancer cells and colon polyps. 25 2-1. 5-Aza-C induces miR-137 expression in colorectal cancer cell lines. 25 2-2. The CpG islands in miR-137 are methylated in clinical colorectal cancer tissues and colon polyps. 25 3. Identification of miR-137 target genes in colorectal cancer cells. 26 4. Aurora-A is a target gene of miR-25 in colorectal cancer cells. 27 4-1. The miRNA targeting prediction program is utilized to search for other putative Aurora-A-targeting miRNAs. 27 4-2. MiR-25 directly targets Aurora-A in colorectal cancer cells. 27 4-3. The expression pattern of miR-25 is not typically decreased in clinical colorectal cancer tissues. 28 5. Aurora-A and PTGS2 are overexpressed and inversely correlated with miR-137 in colon polyp and colorectal cancer tissue. 28 6. MiR-137 regulates cell cycle progression and apoptosis through targeting Aurora-A. 29 6-1. Ectopic expression of miR-137 induces cell cycle arrest and leads to apoptosis. 29 6-2. Expression of constitutively active miR-137 induces cell cycle arrest and apoptosis. 30 6-3. Ectopic expression of Aurora-A blocks the effect of miR-137 on cell cycle progression and apoptosis. 30 6-4. 5-Aza-C induces miR-137 expression and subsequently leads to apoptosis. 31 7. Inducing the expression of miR-137 inhibits the tumor growth ability in vivo. 31 8. Loss of miR-137 expression can predict the tendency of colorectal carcinogenesis. 32 9. MiR-137 is epigenetically silenced in AOM/DSS animal model. 33 9-1. MiR-137 is downregulated in an AOM/DSS animal model. 33 9-2. The CpG islands in miR-137 are methylated in an AOM/DSS animal model. 33 9-3. Decitabine induces miR-137 expression and inhibits tumor growth in an AOM/DSS animal model. 34 D. Discussion 35 1. MiR-137 may serve as prognostic biomarker associated with early colorectal carcinogenesis. 35 2. Overexpression of Aurora-A in colon polyps is identified for the first time and mediated colorectal cancer progression. 35 3. The expression of miR-137 is mediated by upstream regulators. 36 4. Aurora-A is involved in multiple signaling pathways. 37 5. MiR-137 regulates the cell cycle and cancer progression 38 6. The role of miR-25 needs to be identified in the patient cohort. 39 7. The target genes of miR-137 in AOM/DSS mouse model 40 8. Conclusion 40 E. References 42 F. Figures 59 G. Tables 108 H. Curriculum vitae 112

    1. Siegel, R. L., Miller, K. D., and Jemal, A. (2016) Cancer statistics, 2016. CA: a cancer journal for clinicians 66, 7-30
    2. Armaghany, T., Wilson, J. D., Chu, Q., and Mills, G. (2012) Genetic alterations in colorectal cancer. Gastrointestinal cancer research 5, 19-27
    3. Fleming, M., Ravula, S., Tatishchev, S. F., and Wang, H. L. (2012) Colorectal carcinoma: Pathologic aspects. Journal of gastrointestinal oncology 3, 153-173
    4. Yang, H. M., Mitchell, J. M., Sepulveda, J. L., and Sepulveda, A. R. (2015) Molecular and histologic considerations in the assessment of serrated polyps. Archives of pathology & laboratory medicine 139, 730-741
    5. Kwong, L. N., and Dove, W. F. (2009) APC and its modifiers in colon cancer. Advances in experimental medicine and biology 656, 85-106
    6. Irving, A. A., Yoshimi, K., Hart, M. L., Parker, T., Clipson, L., Ford, M. R., Kuramoto, T., Dove, W. F., and Amos-Landgraf, J. M. (2014) The utility of Apc-mutant rats in modeling human colon cancer. Disease models & mechanisms 7, 1215-1225
    7. Pino, M. S., and Chung, D. C. (2010) The chromosomal instability pathway in colon cancer. Gastroenterology 138, 2059-2072
    8. Carrato, A. (2008) Adjuvant treatment of colorectal cancer. Gastrointestinal cancer research 2, S42-46
    9. Nies, A. T., Magdy, T., Schwab, M., and Zanger, U. M. (2015) Role of ABC transporters in fluoropyrimidine-based chemotherapy response. Advances in cancer research 125, 217-243
    10. Hirsch, B. R., and Zafar, S. Y. (2011) Capecitabine in the management of colorectal cancer. Cancer management and research 3, 79-89
    11. Kim, Y. J., Lee, W. J., Woo, S. M., Kim, T. H., Han, S. S., Kim, B. H., Moon, S. H., Kim, S. S., Koh, Y. H., Park, S. J., Kim, J. Y., Kim, D. Y., and Park, J. W. (2013) Comparison of capecitabine and 5-fluorouracil in chemoradiotherapy for locally advanced pancreatic cancer. Radiation oncology 8, 160
    12. Dasari, S., and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology 740, 364-378
    13. Alcindor, T., and Beauger, N. (2011) Oxaliplatin: a review in the era of molecularly targeted therapy. Current oncology 18, 18-25
    14. Normanno, N., Tejpar, S., Morgillo, F., De Luca, A., Van Cutsem, E., and Ciardiello, F. (2009) Implications for KRAS status and EGFR-targeted therapies in metastatic CRC. Nature reviews. Clinical oncology 6, 519-527
    15. Roberti, M. P., Barrio, M. M., Bravo, A. I., Rocca, Y. S., Arriaga, J. M., Bianchini, M., Mordoh, J., and Levy, E. M. (2011) IL-15 and IL-2 increase Cetuximab-mediated cellular cytotoxicity against triple negative breast cancer cell lines expressing EGFR. Breast cancer research and treatment 130, 465-475
    16. Shaib, W., Mahajan, R., and El-Rayes, B. (2013) Markers of resistance to anti-EGFR therapy in colorectal cancer. Journal of gastrointestinal oncology 4, 308-318
    17. Dienstmann, R., Salazar, R., and Tabernero, J. (2015) Overcoming Resistance to Anti-EGFR Therapy in Colorectal Cancer. American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Meeting, e149-156
    18. Troiani, T., Napolitano, S., Della Corte, C. M., Martini, G., Martinelli, E., Morgillo, F., and Ciardiello, F. (2016) Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence. ESMO open 1, e000088
    19. Pavlidis, E. T., and Pavlidis, T. E. (2013) Role of bevacizumab in colorectal cancer growth and its adverse effects: a review. World journal of gastroenterology 19, 5051-5060
    20. Lee, J. J., and Sun, W. (2016) Options for Second-Line Treatment in Metastatic Colorectal Cancer. Clinical advances in hematology & oncology 14, 46-54
    21. Fontanella, C., Ongaro, E., Bolzonello, S., Guardascione, M., Fasola, G., and Aprile, G. (2014) Clinical advances in the development of novel VEGFR2 inhibitors. Annals of translational medicine 2, 123
    22. Wahid, F., Shehzad, A., Khan, T., and Kim, Y. Y. (2010) MicroRNAs: synthesis, mechanism, function, and recent clinical trials. Biochimica et biophysica acta 1803, 1231-1243
    23. Macfarlane, L. A., and Murphy, P. R. (2010) MicroRNA: Biogenesis, Function and Role in Cancer. Current genomics 11, 537-561
    24. Lages, E., Ipas, H., Guttin, A., Nesr, H., Berger, F., and Issartel, J. P. (2012) MicroRNAs: molecular features and role in cancer. Frontiers in bioscience 17, 2508-2540
    25. Hata, A., and Lieberman, J. (2015) Dysregulation of microRNA biogenesis and gene silencing in cancer. Science signaling 8, re3
    26. Ryan, B., Joilin, G., and Williams, J. M. (2015) Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Frontiers in molecular neuroscience 8, 4
    27. Adams, B. D., Kasinski, A. L., and Slack, F. J. (2014) Aberrant regulation and function of microRNAs in cancer. Current biology 24, R762-776
    28. Almeida, M. I., Reis, R. M., and Calin, G. A. (2011) MicroRNA history: discovery, recent applications, and next frontiers. Mutation research 717, 1-8
    29. Wu, W. K., Law, P. T., Lee, C. W., Cho, C. H., Fan, D., Wu, K., Yu, J., and Sung, J. J. (2011) MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 32, 247-253
    30. Carthew, R. W., and Sontheimer, E. J. (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136, 642-655
    31. Michael, M. Z., SM, O. C., van Holst Pellekaan, N. G., Young, G. P., and James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Molecular cancer research 1, 882-891
    32. Calin, G. A., Dumitru, C. D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., Rassenti, L., Kipps, T., Negrini, M., Bullrich, F., and Croce, C. M. (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America 99, 15524-15529
    33. He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., Goodson, S., Powers, S., Cordon-Cardo, C., Lowe, S. W., Hannon, G. J., and Hammond, S. M. (2005) A microRNA polycistron as a potential human oncogene. Nature 435, 828-833
    34. Iorio, M. V., and Croce, C. M. (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO molecular medicine 4, 143-159
    35. Costa, P. M., and Pedroso de Lima, M. C. (2013) MicroRNAs as Molecular Targets for Cancer Therapy: On the Modulation of MicroRNA Expression. Pharmaceuticals 6, 1195-1220
    36. Sun, R., Shen, J. K., Choy, E., Yu, Z., Hornicek, F. J., and Duan, Z. (2015) The emerging roles and therapeutic potential of microRNAs (miRs) in liposarcoma. Discovery medicine 20, 311-324
    37. Ventura, A., and Jacks, T. (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586-591
    38. Williams, A. H., Liu, N., van Rooij, E., and Olson, E. N. (2009) MicroRNA control of muscle development and disease. Current opinion in cell biology 21, 461-469
    39. Mendell, J. T., and Olson, E. N. (2012) MicroRNAs in stress signaling and human disease. Cell 148, 1172-1187
    40. Stenvang, J., Petri, A., Lindow, M., Obad, S., and Kauppinen, S. (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3, 1
    41. van Rooij, E., Purcell, A. L., and Levin, A. A. (2012) Developing microRNA therapeutics. Circulation research 110, 496-507
    42. Mogilyansky, E., and Rigoutsos, I. (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell death and differentiation 20, 1603-1614
    43. Kim, Y. K., Yu, J., Han, T. S., Park, S. Y., Namkoong, B., Kim, D. H., Hur, K., Yoo, M. W., Lee, H. J., Yang, H. K., and Kim, V. N. (2009) Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic acids research 37, 1672-1681
    44. Li, Y., Tan, W., Neo, T. W., Aung, M. O., Wasser, S., Lim, S. G., and Tan, T. M. (2009) Role of the miR-106b-25 microRNA cluster in hepatocellular carcinoma. Cancer science 100, 1234-1242
    45. Kan, T., Sato, F., Ito, T., Matsumura, N., David, S., Cheng, Y., Agarwal, R., Paun, B. C., Jin, Z., Olaru, A. V., Selaru, F. M., Hamilton, J. P., Yang, J., Abraham, J. M., Mori, Y., and Meltzer, S. J. (2009) The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology 136, 1689-1700
    46. Peng, G., Yuan, X., Yuan, J., Liu, Q., Dai, M., Shen, C., Ma, J., Liao, Y., and Jiang, W. (2015) miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL. Molecular and cellular biochemistry 409, 103-111
    47. Zhang, J., Gong, X., Tian, K., Chen, D., Sun, J., Wang, G., and Guo, M. (2015) miR-25 promotes glioma cell proliferation by targeting CDKN1C. Biomedicine & pharmacotherapy 71, 7-14
    48. Caiazza, C., and Mallardo, M. (2016) The Roles of miR-25 and its Targeted Genes in Development of Human Cancer. MicroRNA 5, 113-119
    49. Zhang, Y., Peng, Z., Zhao, Y., and Chen, L. (2016) microRNA-25 Inhibits Cell Apoptosis of Human Gastric Adenocarcinoma Cell Line AGS via Regulating CCNE1 and MYC. Medical science monitor 22, 1415-1420
    50. Su, Z. X., Zhao, J., Rong, Z. H., Geng, W. M., Wu, Y. G., and Qin, C. K. (2014) Upregulation of microRNA-25 associates with prognosis in hepatocellular carcinoma. Diagnostic pathology 9, 47
    51. Wang, C., Wang, X., Su, Z., Fei, H., Liu, X., and Pan, Q. (2015) MiR-25 promotes hepatocellular carcinoma cell growth, migration and invasion by inhibiting RhoGDI1. Oncotarget 6, 36231-36244
    52. Feng, S., Pan, W., Jin, Y., and Zheng, J. (2014) MiR-25 promotes ovarian cancer proliferation and motility by targeting LATS2. Tumour biology 35, 12339-12344
    53. Li, X., Yang, C., Wang, X., Zhang, J., Zhang, R., and Liu, R. (2014) The expression of miR-25 is increased in colorectal cancer and is associated with patient prognosis. Medical oncology 31, 781
    54. Zhang, H., Zuo, Z., Lu, X., Wang, L., Wang, H., and Zhu, Z. (2012) MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncology reports 27, 594-598
    55. Razumilava, N., Bronk, S. F., Smoot, R. L., Fingas, C. D., Werneburg, N. W., Roberts, L. R., and Mott, J. L. (2012) miR-25 targets TNF-related apoptosis inducing ligand (TRAIL) death receptor-4 and promotes apoptosis resistance in cholangiocarcinoma. Hepatology 55, 465-475
    56. Li, Q., Zou, C., Zou, C., Han, Z., Xiao, H., Wei, H., Wang, W., Zhang, L., Zhang, X., Tang, Q., Zhang, C., Tao, J., Wang, X., and Gao, X. (2013) MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer letters 335, 168-174
    57. Zhou, J., Wang, J., Wu, S., Zhu, S., Wang, S., Zhou, H., Tian, X., Tang, N., and Nie, S. (2014) Angiopoietin-like protein 2 negatively regulated by microRNA-25 contributes to the malignant progression of colorectal cancer. International journal of molecular medicine 34, 1286-1292
    58. Sun, G., Ye, P., Murai, K., Lang, M. F., Li, S., Zhang, H., Li, W., Fu, C., Yin, J., Wang, A., Ma, X., and Shi, Y. (2011) miR-137 forms a regulatory loop with nuclear receptor TLX and LSD1 in neural stem cells. Nature communications 2, 529
    59. Smalheiser, N. R., Lugli, G., Rizavi, H. S., Torvik, V. I., Turecki, G., and Dwivedi, Y. (2012) MicroRNA expression is down-regulated and reorganized in prefrontal cortex of depressed suicide subjects. PloS one 7, e33201
    60. Green, E. K., Grozeva, D., Jones, I., Jones, L., Kirov, G., Caesar, S., Gordon-Smith, K., Fraser, C., Forty, L., Russell, E., Hamshere, M. L., Moskvina, V., Nikolov, I., Farmer, A., McGuffin, P., Holmans, P. A., Owen, M. J., O'Donovan, M. C., and Craddock, N. (2010) The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular psychiatry 15, 1016-1022
    61. Sarachana, T., and Hu, V. W. (2013) Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Molecular autism 4, 14
    62. Soldati, C., Bithell, A., Johnston, C., Wong, K. Y., Stanton, L. W., and Buckley, N. J. (2013) Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease. Journal of neurochemistry 124, 418-430
    63. Willemsen, M. H., Valles, A., Kirkels, L. A., Mastebroek, M., Olde Loohuis, N., Kos, A., Wissink-Lindhout, W. M., de Brouwer, A. P., Nillesen, W. M., Pfundt, R., Holder-Espinasse, M., Vallee, L., Andrieux, J., Coppens-Hofman, M. C., Rensen, H., Hamel, B. C., van Bokhoven, H., Aschrafi, A., and Kleefstra, T. (2011) Chromosome 1p21.3 microdeletions comprising DPYD and MIR137 are associated with intellectual disability. Journal of medical genetics 48, 810-818
    64. Liu, M., Lang, N., Qiu, M., Xu, F., Li, Q., Tang, Q., Chen, J., Chen, X., Zhang, S., Liu, Z., Zhou, J., Zhu, Y., Deng, Y., Zheng, Y., and Bi, F. (2011) miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells. International journal of cancer 128, 1269-1279
    65. Liang, L., Li, X., Zhang, X., Lv, Z., He, G., Zhao, W., Ren, X., Li, Y., Bian, X., Liao, W., Liu, W., Yang, G., and Ding, Y. (2013) MicroRNA-137, an HMGA1 target, suppresses colorectal cancer cell invasion and metastasis in mice by directly targeting FMNL2. Gastroenterology 144, 624-635.e624
    66. Chen, D. L., Wang, D. S., Wu, W. J., Zeng, Z. L., Luo, H. Y., Qiu, M. Z., Ren, C., Zhang, D. S., Wang, Z. Q., Wang, F. H., Li, Y. H., Kang, T. B., and Xu, R. H. (2013) Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis 34, 803-811
    67. Smith, A. R., Marquez, R. T., Tsao, W. C., Pathak, S., Roy, A., Ping, J., Wilkerson, B., Lan, L., Meng, W., Neufeld, K. L., Sun, X. F., and Xu, L. (2015) Tumor suppressive microRNA-137 negatively regulates Musashi-1 and colorectal cancer progression. Oncotarget 6, 12558-12573
    68. Liu, L. L., Lu, S. X., Li, M., Li, L. Z., Fu, J., Hu, W., Yang, Y. Z., Luo, R. Z., Zhang, C. Z., and Yun, J. P. (2014) FoxD3-regulated microRNA-137 suppresses tumour growth and metastasis in human hepatocellular carcinoma by targeting AKT2. Oncotarget 5, 5113-5124
    69. Gao, M., Liu, L., Li, S., Zhang, X., Chang, Z., and Zhang, M. (2015) Inhibition of cell proliferation and metastasis of human hepatocellular carcinoma by miR-137 is regulated by CDC42. Oncology reports 34, 2523-2532
    70. Wu, D. C., Zhang, M. F., Su, S. G., Fang, H. Y., Wang, X. H., He, D., Xie, Y. Y., and Liu, X. H. (2016) HEY2, a target of miR-137, indicates poor outcomes and promotes cell proliferation and migration in hepatocellular carcinoma. Oncotarget 7, 38052-38063
    71. Zhu, M., Li, M., Wang, T., Linghu, E., and Wu, B. (2016) MicroRNA-137 represses FBI-1 to inhibit proliferation and in vitro invasion and migration of hepatocellular carcinoma cells. Tumour biology 37, 13995-14008
    72. Bi, Y., Han, Y., Bi, H., Gao, F., and Wang, X. (2014) miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin. Human cell 27, 95-102
    73. Li, P., Ma, L., Zhang, Y., Ji, F., and Jin, F. (2014) MicroRNA-137 down-regulates KIT and inhibits small cell lung cancer cell proliferation. Biomedicine & pharmacotherapy 68, 7-12
    74. Zhu, X., Li, Y., Shen, H., Li, H., Long, L., Hui, L., and Xu, W. (2013) miR-137 inhibits the proliferation of lung cancer cells by targeting Cdc42 and Cdk6. FEBS letters 587, 73-81
    75. Chen, L., Wang, X., Wang, H., Li, Y., Yan, W., Han, L., Zhang, K., Zhang, J., Wang, Y., Feng, Y., Pu, P., Jiang, T., Kang, C., and Jiang, C. (2012) miR-137 is frequently down-regulated in glioblastoma and is a negative regulator of Cox-2. European journal of cancer 48, 3104-3111
    76. Cheng, Y., Li, Y., Liu, D., Zhang, R., and Zhang, J. (2014) miR-137 effects on gastric carcinogenesis are mediated by targeting Cox-2-activated PI3K/AKT signaling pathway. FEBS letters 588, 3274-3281
    77. Luo, C., Tetteh, P. W., Merz, P. R., Dickes, E., Abukiwan, A., Hotz-Wagenblatt, A., Holland-Cunz, S., Sinnberg, T., Schittek, B., Schadendorf, D., Diederichs, S., and Eichmuller, S. B. (2013) miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes. The Journal of investigative dermatology 133, 768-775
    78. Hao, S., Luo, C., Abukiwan, A., Wang, G., He, J., Huang, L., Weber, C. E., Lv, N., Xiao, X., Eichmuller, S. B., and He, D. (2015) miR-137 inhibits proliferation of melanoma cells by targeting PAK2. Experimental dermatology 24, 947-952
    79. Sun, L., Liang, J., Wang, Q., Li, Z., Du, Y., and Xu, X. (2016) MicroRNA-137 suppresses tongue squamous carcinoma cell proliferation, migration and invasion. Cell proliferation 49, 628-635
    80. Bier, A., Giladi, N., Kronfeld, N., Lee, H. K., Cazacu, S., Finniss, S., Xiang, C., Poisson, L., deCarvalho, A. C., Slavin, S., Jacoby, E., Yalon, M., Toren, A., Mikkelsen, T., and Brodie, C. (2013) MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 4, 665-676
    81. Sun, J., Zheng, G., Gu, Z., and Guo, Z. (2015) MiR-137 inhibits proliferation and angiogenesis of human glioblastoma cells by targeting EZH2. Journal of neuro-oncology 122, 481-489
    82. Dong, S., Jin, M., Li, Y., Ren, P., and Liu, J. (2016) MiR-137 acts as a tumor suppressor in papillary thyroid carcinoma by targeting CXCL12. Oncology reports 35, 2151-2158
    83. Luo, Y., Li, X., Dong, J., and Sun, W. (2016) microRNA-137 is downregulated in thyroid cancer and inhibits proliferation and invasion by targeting EGFR. Tumour biology 37, 7749-7755
    84. Deng, D., Xue, L., Shao, N., Qu, H., Wang, Q., Wang, S., Xia, X., Yang, Y., and Zhi, F. (2016) miR-137 acts as a tumor suppressor in astrocytoma by targeting RASGRF1. Tumour biology 37, 3331-3340
    85. Li, Z. M., Zhang, H. Y., Wang, Y. X., and Wang, W. B. (2016) MicroRNA-137 is downregulated in human osteosarcoma and regulates cell proliferation and migration through targeting FXYD6. Journal of drug targeting 24, 102-110
    86. Han, Y., Bi, Y., Bi, H., Diao, C., Zhang, G., Cheng, K., and Yang, Z. (2016) miR-137 suppresses the invasion and procedure of EMT of human breast cancer cell line MCF-7 through targeting CtBP1. Human cell 29, 30-36
    87. Zhu, X., Li, Y., Shen, H., Li, H., Long, L., Hui, L., and Xu, W. (2013) miR-137 restoration sensitizes multidrug-resistant MCF-7/ADM cells to anticancer agents by targeting YB-1. Acta biochimica et biophysica Sinica 45, 80-86
    88. Guo, J., Xia, B., Meng, F., and Lou, G. (2013) miR-137 suppresses cell growth in ovarian cancer by targeting AEG-1. Biochemical and biophysical research communications 441, 357-363
    89. Li, X., Chen, W., Zeng, W., Wan, C., Duan, S., and Jiang, S. (2017) microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. British journal of cancer 116, 66-76
    90. Chen, Q., Chen, X., Zhang, M., Fan, Q., Luo, S., and Cao, X. (2011) miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Digestive diseases and sciences 56, 2009-2016
    91. Wu, L., Chen, J., Ding, C., Wei, S., Zhu, Y., Yang, W., Zhang, X., Wei, X., and Han, D. (2015) MicroRNA-137 Contributes to Dampened Tumorigenesis in Human Gastric Cancer by Targeting AKT2. PloS one 10, e0130124
    92. Kozaki, K., Imoto, I., Mogi, S., Omura, K., and Inazawa, J. (2008) Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer research 68, 2094-2105
    93. Chen, X., Wang, J., Shen, H., Lu, J., Li, C., Hu, D. N., Dong, X. D., Yan, D., and Tu, L. (2011) Epigenetics, microRNAs, and carcinogenesis: functional role of microRNA-137 in uveal melanoma. Investigative ophthalmology & visual science 52, 1193-1199
    94. Silber, J., Lim, D. A., Petritsch, C., Persson, A. I., Maunakea, A. K., Yu, M., Vandenberg, S. R., Ginzinger, D. G., James, C. D., Costello, J. F., Bergers, G., Weiss, W. A., Alvarez-Buylla, A., and Hodgson, J. G. (2008) miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells. BMC medicine 6, 14
    95. Balaguer, F., Link, A., Lozano, J. J., Cuatrecasas, M., Nagasaka, T., Boland, C. R., and Goel, A. (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer research 70, 6609-6618
    96. Steponaitiene, R., Kupcinskas, J., Langner, C., Balaguer, F., Venclauskas, L., Pauzas, H., Tamelis, A., Skieceviciene, J., Kupcinskas, L., Malfertheiner, P., and Link, A. (2016) Epigenetic silencing of miR-137 is a frequent event in gastric carcinogenesis. Molecular carcinogenesis 55, 376-386
    97. Langevin, S. M., Stone, R. A., Bunker, C. H., Grandis, J. R., Sobol, R. W., and Taioli, E. (2010) MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis 31, 864-870
    98. Langevin, S. M., Stone, R. A., Bunker, C. H., Lyons-Weiler, M. A., LaFramboise, W. A., Kelly, L., Seethala, R. R., Grandis, J. R., Sobol, R. W., and Taioli, E. (2011) MicroRNA-137 promoter methylation is associated with poorer overall survival in patients with squamous cell carcinoma of the head and neck. Cancer 117, 1454-1462
    99. Ding, J., Swain, J. E., and Smith, G. D. (2011) Aurora kinase-A regulates microtubule organizing center (MTOC) localization, chromosome dynamics, and histone-H3 phosphorylation in mouse oocytes. Molecular reproduction and development 78, 80-90
    100. Hochegger, H., Hegarat, N., and Pereira-Leal, J. B. (2013) Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle. Open biology 3, 120185
    101. Asteriti, I. A., De Mattia, F., and Guarguaglini, G. (2015) Cross-Talk between AURKA and Plk1 in Mitotic Entry and Spindle Assembly. Frontiers in oncology 5, 283
    102. Green, M. R., Woolery, J. E., and Mahadevan, D. (2011) Update on Aurora Kinase Targeted Therapeutics in Oncology. Expert opinion on drug discovery 6, 291-307
    103. Carmena, M., Ruchaud, S., and Earnshaw, W. C. (2009) Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Current opinion in cell biology 21, 796-805
    104. Vas, A. C., and Clarke, D. J. (2008) Aurora B kinases restrict chromosome decondensation to telophase of mitosis. Cell cycle 7, 293-296
    105. Dar, A. A., Goff, L. W., Majid, S., Berlin, J., and El-Rifai, W. (2010) Aurora kinase inhibitors--rising stars in cancer therapeutics? Molecular cancer therapeutics 9, 268-278
    106. Hirano, T. (2012) Condensins: universal organizers of chromosomes with diverse functions. Genes & development 26, 1659-1678
    107. Yao, C., Rath, U., Maiato, H., Sharp, D., Girton, J., Johansen, K. M., and Johansen, J. (2012) A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis. Molecular biology of the cell 23, 3532-3541
    108. Noatynska, A., Tavernier, N., Gotta, M., and Pintard, L. (2013) Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms? Open biology 3, 130083
    109. Wunderlich, A., Fischer, M., Schlosshauer, T., Ramaswamy, A., Greene, B. H., Brendel, C., Doll, D., Bartsch, D., and Hoffmann, S. (2011) Evaluation of Aurora kinase inhibition as a new therapeutic strategy in anaplastic and poorly differentiated follicular thyroid cancer. Cancer science 102, 762-768
    110. Zuazua-Villar, P., Rodriguez, R., Gagou, M. E., Eyers, P. A., and Meuth, M. (2014) DNA replication stress in CHK1-depleted tumour cells triggers premature (S-phase) mitosis through inappropriate activation of Aurora kinase B. Cell death & disease 5, e1253
    111. Baldini, E., Tuccilli, C., Prinzi, N., Sorrenti, S., Antonelli, A., Gnessi, L., Morrone, S., Moretti, C., Bononi, M., Arlot-Bonnemains, Y., D'Armiento, M., and Ulisse, S. (2014) Effects of selective inhibitors of Aurora kinases on anaplastic thyroid carcinoma cell lines. Endocrine-related cancer 21, 797-811
    112. de Groot, C. O., Hsia, J. E., Anzola, J. V., Motamedi, A., Yoon, M., Wong, Y. L., Jenkins, D., Lee, H. J., Martinez, M. B., Davis, R. L., Gahman, T. C., Desai, A., and Shiau, A. K. (2015) A Cell Biologist's Field Guide to Aurora Kinase Inhibitors. Frontiers in oncology 5, 285
    113. Goldenson, B., and Crispino, J. D. (2015) The aurora kinases in cell cycle and leukemia. Oncogene 34, 537-545
    114. Sasai, K., Katayama, H., Hawke, D. H., and Sen, S. (2016) Aurora-C Interactions with Survivin and INCENP Reveal Shared and Distinct Features Compared with Aurora-B Chromosome Passenger Protein Complex. PloS one 11, e0157305
    115. Avo Santos, M., van de Werken, C., de Vries, M., Jahr, H., Vromans, M. J., Laven, J. S., Fauser, B. C., Kops, G. J., Lens, S. M., and Baart, E. B. (2011) A role for Aurora C in the chromosomal passenger complex during human preimplantation embryo development. Human reproduction 26, 1868-1881
    116. Lin, B. W., Wang, Y. C., Chang-Liao, P. Y., Lin, Y. J., Yang, S. T., Tsou, J. H., Chang, K. C., Liu, Y. W., Tseng, J. T., Lee, C. T., Lee, J. C., and Hung, L. Y. (2014) Overexpression of Aurora-C interferes with the spindle checkpoint by promoting the degradation of Aurora-B. Cell death & disease 5, e1106
    117. Nielsen, A. Y., and Gjerstorff, M. F. (2016) Ectopic Expression of Testis Germ Cell Proteins in Cancer and Its Potential Role in Genomic Instability. International journal of molecular sciences 17
    118. van Leuken, R., Clijsters, L., van Zon, W., Lim, D., Yao, X., Wolthuis, R. M., Yaffe, M. B., Medema, R. H., and van Vugt, M. A. (2009) Polo-like kinase-1 controls Aurora A destruction by activating APC/C-Cdh1. PloS one 4, e5282
    119. Giubettini, M., Asteriti, I. A., Scrofani, J., De Luca, M., Lindon, C., Lavia, P., and Guarguaglini, G. (2011) Control of Aurora-A stability through interaction with TPX2. Journal of cell science 124, 113-122
    120. Huang, Y. H., Wu, C. C., Chou, C. K., and Huang, C. Y. (2011) A translational regulator, PUM2, promotes both protein stability and kinase activity of Aurora-A. PloS one 6, e19718
    121. Ice, R. J., McLaughlin, S. L., Livengood, R. H., Culp, M. V., Eddy, E. R., Ivanov, A. V., and Pugacheva, E. N. (2013) NEDD9 depletion destabilizes Aurora A kinase and heightens the efficacy of Aurora A inhibitors: implications for treatment of metastatic solid tumors. Cancer research 73, 3168-3180
    122. Shu, F., Guo, S., Dang, Y., Qi, M., Zhou, G., Guo, Z., Zhang, Y., Wu, C., Zhao, S., and Yu, L. (2003) Human aurora-B binds to a proteasome alpha-subunit HC8 and undergoes degradation in a proteasome-dependent manner. Molecular and cellular biochemistry 254, 157-162
    123. Nikonova, A. S., Astsaturov, I., Serebriiskii, I. G., Dunbrack, R. L., Jr., and Golemis, E. A. (2013) Aurora A kinase (AURKA) in normal and pathological cell division. Cellular and molecular life sciences 70, 661-687
    124. Baldini, E., D'Armiento, M., and Ulisse, S. (2014) A new aurora in anaplastic thyroid cancer therapy. International journal of endocrinology 2014, 816430
    125. Platani, M., Trinkle-Mulcahy, L., Porter, M., Jeyaprakash, A. A., and Earnshaw, W. C. (2015) Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes. The Journal of cell biology 210, 45-62
    126. Tsunematsu, T., Arakaki, R., Yamada, A., Ishimaru, N., and Kudo, Y. (2015) The Non-Canonical Role of Aurora-A in DNA Replication. Frontiers in oncology 5, 187
    127. Garrido, G., and Vernos, I. (2016) Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Frontiers in oncology 6, 88
    128. Barretta, M. L., Spano, D., D'Ambrosio, C., Cervigni, R. I., Scaloni, A., Corda, D., and Colanzi, A. (2016) Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nature communications 7, 11727
    129. Van Horn, R. D., Chu, S., Fan, L., Yin, T., Du, J., Beckmann, R., Mader, M., Zhu, G., Toth, J., Blanchard, K., and Ye, X. S. (2010) Cdk1 activity is required for mitotic activation of aurora A during G2/M transition of human cells. The Journal of biological chemistry 285, 21849-21857
    130. Chou, C. H., Loh, J. K., Yang, M. C., Lin, C. C., Hong, M. C., Cho, C. L., Chou, A. K., Wang, C. H., Lieu, A. S., Howng, S. L., Hsu, C. M., and Hong, Y. R. (2015) AIBp regulates mitotic entry and mitotic spindle assembly by controlling activation of both Aurora-A and Plk1. Cell cycle 14, 2764-2776
    131. Macurek, L., Lindqvist, A., Lim, D., Lampson, M. A., Klompmaker, R., Freire, R., Clouin, C., Taylor, S. S., Yaffe, M. B., and Medema, R. H. (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455, 119-123
    132. Seki, A., Coppinger, J. A., Jang, C. Y., Yates, J. R., and Fang, G. (2008) Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science 320, 1655-1658
    133. Dodson, C. A., and Bayliss, R. (2012) Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic. The Journal of biological chemistry 287, 1150-1157
    134. Zorba, A., Buosi, V., Kutter, S., Kern, N., Pontiggia, F., Cho, Y. J., and Kern, D. (2014) Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. eLife 3, e02667
    135. Vader, G., and Lens, S. M. (2008) The Aurora kinase family in cell division and cancer. Biochimica et biophysica acta 1786, 60-72
    136. Katayama, H., Sasai, K., Kloc, M., Brinkley, B. R., and Sen, S. (2008) Aurora kinase-A regulates kinetochore/chromatin associated microtubule assembly in human cells. Cell cycle 7, 2691-2704
    137. Sardon, T., Peset, I., Petrova, B., and Vernos, I. (2008) Dissecting the role of Aurora A during spindle assembly. The EMBO journal 27, 2567-2579
    138. Scrofani, J., Sardon, T., Meunier, S., and Vernos, I. (2015) Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Current biology 25, 131-140
    139. Bai, M., Ni, J., Shen, S., Huang, Q., Wu, J., Le, Y., and Yu, L. (2014) Aurora-A kinase-inactive mutants disrupt the interaction with Ajuba and cause defects in mitotic spindle formation and G2/M phase arrest in HeLa cells. BMB reports 47, 631-636
    140. Bai, M., Ni, J., Wu, J., Wang, B., Shen, S., and Yu, L. (2014) A novel mechanism for activation of Aurora-A kinase by Ajuba. Gene 543, 133-139
    141. Bruinsma, W., Macurek, L., Freire, R., Lindqvist, A., and Medema, R. H. (2014) Bora and Aurora-A continue to activate Plk1 in mitosis. Journal of cell science 127, 801-811
    142. Lioutas, A., and Vernos, I. (2013) Aurora A kinase and its substrate TACC3 are required for central spindle assembly. EMBO reports 14, 829-836
    143. Burgess, S. G., Peset, I., Joseph, N., Cavazza, T., Vernos, I., Pfuhl, M., Gergely, F., and Bayliss, R. (2015) Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly. PLoS genetics 11, e1005345
    144. Katayama, H., Wang, J., Treekitkarnmongkol, W., Kawai, H., Sasai, K., Zhang, H., Wang, H., Adams, H. P., Jiang, S., Chakraborty, S. N., Suzuki, F., Arlinghaus, R. B., Liu, J., Mobley, J. A., Grizzle, W. E., Wang, H., and Sen, S. (2012) Aurora kinase-A inactivates DNA damage-induced apoptosis and spindle assembly checkpoint response functions of p73. Cancer cell 21, 196-211
    145. Yu, F., Jiang, Y., Lu, L., Cao, M., Qiao, Y., Liu, X., Liu, D., Van Dyke, T., Wang, F., Yao, X., Guo, J., and Yang, Z. (2017) Aurora-A promotes the establishment of spindle assembly checkpoint by priming the Haspin-Aurora-B feedback loop in late G2 phase. Cell Discov 3, 16049
    146. Cirak, Y., Furuncuoglu, Y., Yapicier, O., Aksu, A., and Cubukcu, E. (2015) Aurora A overexpression in breast cancer patients induces taxane resistance and results in worse prognosis. Journal of B.U.ON. 20, 1414-1419
    147. Baba, Y., Nosho, K., Shima, K., Irahara, N., Kure, S., Toyoda, S., Kirkner, G. J., Goel, A., Fuchs, C. S., and Ogino, S. (2009) Aurora-A expression is independently associated with chromosomal instability in colorectal cancer. Neoplasia 11, 418-425
    148. Lo Iacono, M., Monica, V., Saviozzi, S., Ceppi, P., Bracco, E., Papotti, M., and Scagliotti, G. V. (2011) Aurora Kinase A expression is associated with lung cancer histological-subtypes and with tumor de-differentiation. Journal of translational medicine 9, 100
    149. Lassus, H., Staff, S., Leminen, A., Isola, J., and Butzow, R. (2011) Aurora-A overexpression and aneuploidy predict poor outcome in serous ovarian carcinoma. Gynecologic oncology 120, 11-17
    150. Tseng, Y. S., Lee, J. C., Huang, C. Y., and Liu, H. S. (2009) Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC cancer 9, 435
    151. Yang, G., Mercado-Uribe, I., Multani, A. S., Sen, S., Shih Ie, M., Wong, K. K., Gershenson, D. M., and Liu, J. (2013) RAS promotes tumorigenesis through genomic instability induced by imbalanced expression of Aurora-A and BRCA2 in midbody during cytokinesis. International journal of cancer 133, 275-285
    152. Umstead, M., Xiong, J., Qi, Q., Du, Y., and Fu, H. (2017) Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget 8, 28359-28372
    153. Tsai, H. P., Tsai, C. Y., Lieu, A. S., Chai, C. Y., Kwan, A. L., Howng, S. L., and Loh, J. K. (2014) Association of Aurora A and gamma-tubulin expression in astrocytomas and patient survival. Neurological research 36, 746-751
    154. Asteriti, I. A., Rensen, W. M., Lindon, C., Lavia, P., and Guarguaglini, G. (2010) The Aurora-A/TPX2 complex: a novel oncogenic holoenzyme? Biochimica et biophysica acta 1806, 230-239
    155. Gautschi, O., Heighway, J., Mack, P. C., Purnell, P. R., Lara, P. N., Jr., and Gandara, D. R. (2008) Aurora kinases as anticancer drug targets. Clinical cancer research 14, 1639-1648
    156. Yan, A., Wang, L., Xu, S., and Xu, J. (2011) Aurora-A kinase inhibitor scaffolds and binding modes. Drug discovery today 16, 260-269
    157. Roelofs, H. M., Te Morsche, R. H., van Heumen, B. W., Nagengast, F. M., and Peters, W. H. (2014) Over-expression of COX-2 mRNA in colorectal cancer. BMC gastroenterology 14, 1
    158. Zheng, X., Dong, J., Gong, T., Zhang, Z., Wang, Y., Li, Y., Shang, Y., Li, K., Ren, G., Feng, B., Li, J., Tian, Q., Tang, S., Sun, L., Li, M., Zhang, H., and Fan, D. (2015) MicroRNA library-based functional screening identified miR-137 as a suppresser of gastric cancer cell proliferation. Journal of cancer research and clinical oncology 141, 785-795
    159. Zhao, Y., Li, Y., Lou, G., Zhao, L., Xu, Z., Zhang, Y., and He, F. (2012) MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PloS one 7, e39102
    160. Colucci, P. M., Yale, S. H., and Rall, C. J. (2003) Colorectal polyps. Clinical medicine & research 1, 261-262
    161. Umene, K., Yanokura, M., Banno, K., Irie, H., Adachi, M., Iida, M., Nakamura, K., Nogami, Y., Masuda, K., Kobayashi, Y., Tominaga, E., and Aoki, D. (2015) Aurora kinase A has a significant role as a therapeutic target and clinical biomarker in endometrial cancer. International journal of oncology 46, 1498-1506
    162. Katsha, A., Belkhiri, A., Goff, L., and El-Rifai, W. (2015) Aurora kinase A in gastrointestinal cancers: time to target. Molecular cancer 14, 106
    163. Gerceker, E., Boyacioglu, S. O., Kasap, E., Baykan, A., Yuceyar, H., Yildirim, H., Ayhan, S., Ellidokuz, E., and Korkmaz, M. (2015) Never in mitosis gene A-related kinase 6 and aurora kinase A: New gene biomarkers in the conversion from ulcerative colitis to colorectal cancer. Oncology reports 34, 1905-1914
    164. Chen, T., Cai, S. L., Li, J., Qi, Z. P., Li, X. Q., Ye, L. C., Xie, X. F., Hou, Y. Y., Yao, L. Q., Xu, M. D., Zhou, P. H., Xu, J. M., and Zhong, Y. S. (2017) Mecp2-mediated Epigenetic Silencing of miR-137 Contributes to Colorectal Adenoma-Carcinoma Sequence and Tumor Progression via Relieving the Suppression of c-Met. Scientific reports 7, 44543
    165. Bian, D. H., Shi, W., Shao, Y., Li, P. L., and Song, G. D. (2017) Long non-coding RNA GAS5 inhibits tumorigenesis via miR-137 in melanoma. Am J Transl Res 9, 1509-1520
    166. Hilton, J. F., and Shapiro, G. I. (2014) Aurora kinase inhibition as an anticancer strategy. Journal of clinical oncology 32, 57-59
    167. Sehdev, V., Katsha, A., Arras, J., Peng, D., Soutto, M., Ecsedy, J., Zaika, A., Belkhiri, A., and El-Rifai, W. (2014) HDM2 regulation by AURKA promotes cell survival in gastric cancer. Clinical cancer research 20, 76-86
    168. Sankaran, S., Crone, D. E., Palazzo, R. E., and Parvin, J. D. (2007) Aurora-A kinase regulates breast cancer associated gene 1 inhibition of centrosome-dependent microtubule nucleation. Cancer research 67, 11186-11194
    169. Yang, G., Chang, B., Yang, F., Guo, X., Cai, K. Q., Xiao, X. S., Wang, H., Sen, S., Hung, M. C., Mills, G. B., Chang, S., Multani, A. S., Mercado-Uribe, I., and Liu, J. (2010) Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clinical cancer research 16, 3171-3181
    170. Dar, A. A., Belkhiri, A., and El-Rifai, W. (2009) The aurora kinase A regulates GSK-3beta in gastric cancer cells. Oncogene 28, 866-875
    171. Katsha, A., Soutto, M., Sehdev, V., Peng, D., Washington, M. K., Piazuelo, M. B., Tantawy, M. N., Manning, H. C., Lu, P., Shyr, Y., Ecsedy, J., Belkhiri, A., and El-Rifai, W. (2013) Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 145, 1312-1322.e1311-1318
    172. Katsha, A., Arras, J., Soutto, M., Belkhiri, A., and El-Rifai, W. (2014) AURKA regulates JAK2-STAT3 activity in human gastric and esophageal cancers. Molecular oncology 8, 1419-1428
    173. Guan, Z., Wang, X. R., Zhu, X. F., Huang, X. F., Xu, J., Wang, L. H., Wan, X. B., Long, Z. J., Liu, J. N., Feng, G. K., Huang, W., Zeng, Y. X., Chen, F. J., and Liu, Q. (2007) Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer research 67, 10436-10444
    174. Otto, T., Horn, S., Brockmann, M., Eilers, U., Schuttrumpf, L., Popov, N., Kenney, A. M., Schulte, J. H., Beijersbergen, R., Christiansen, H., Berwanger, B., and Eilers, M. (2009) Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer cell 15, 67-78
    175. Yang, H., He, L., Kruk, P., Nicosia, S. V., and Cheng, J. Q. (2006) Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. International journal of cancer 119, 2304-2312
    176. Dar, A. A., Belkhiri, A., Ecsedy, J., Zaika, A., and El-Rifai, W. (2008) Aurora kinase A inhibition leads to p73-dependent apoptosis in p53-deficient cancer cells. Cancer research 68, 8998-9004
    177. Briassouli, P., Chan, F., Savage, K., Reis-Filho, J. S., and Linardopoulos, S. (2007) Aurora-A regulation of nuclear factor-kappaB signaling by phosphorylation of IkappaBalpha. Cancer research 67, 1689-1695
    178. Chefetz, I., Holmberg, J. C., Alvero, A. B., Visintin, I., and Mor, G. (2011) Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFkB pathway. Cell cycle 10, 2206-2214
    179. Linardopoulos, S. (2007) Aurora-A kinase regulates NF-kappaB activity: lessons from combination studies. Journal of B.U.ON. 12 Suppl 1, S67-70
    180. Gomez Del Pulgar, T., Valdes-Mora, F., Bandres, E., Perez-Palacios, R., Espina, C., Cejas, P., Garcia-Cabezas, M. A., Nistal, M., Casado, E., Gonzalez-Baron, M., Garcia-Foncillas, J., and Lacal, J. C. (2008) Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. International journal of oncology 33, 185-193
    181. Petrocca, F., Visone, R., Onelli, M. R., Shah, M. H., Nicoloso, M. S., de Martino, I., Iliopoulos, D., Pilozzi, E., Liu, C. G., Negrini, M., Cavazzini, L., Volinia, S., Alder, H., Ruco, L. P., Baldassarre, G., Croce, C. M., and Vecchione, A. (2008) E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer cell 13, 272-286
    182. Tan, W., Li, Y., Lim, S. G., and Tan, T. M. (2014) miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World journal of gastroenterology 20, 5962-5972
    183. Poliseno, L., Salmena, L., Riccardi, L., Fornari, A., Song, M. S., Hobbs, R. M., Sportoletti, P., Varmeh, S., Egia, A., Fedele, G., Rameh, L., Loda, M., and Pandolfi, P. P. (2010) Identification of the miR-106b~25 microRNA cluster as a proto-oncogenic PTEN-targeting intron that cooperates with its host gene MCM7 in transformation. Science signaling 3, ra29
    184. Gong, J., Cui, Z., Li, L., Ma, Q., Wang, Q., Gao, Y., and Sun, H. (2015) MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour biology 36, 7831-7840
    185. Zhao, Z., Liu, J., Wang, C., Wang, Y., Jiang, Y., and Guo, M. (2014) MicroRNA-25 regulates small cell lung cancer cell development and cell cycle through cyclin E2. International journal of clinical and experimental pathology 7, 7726-7734

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE