簡易檢索 / 詳目顯示

研究生: 黃冠華
Huang, Guan-Hua
論文名稱: 具週期結構薄板之蘭姆波波傳量測與分析
Measurement and Analysis of Lamb Wave Propagating on Plates with Periodic Structures
指導教授: 張怡玲
Chang, I-Ling
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 蘭姆波聲子晶體平板頻帶結構能隙PVDF線聚焦換能器
外文關鍵詞: Lamb wave, phononic crystal plate, band structures, band gap, PVDF line-focus transducer
相關次數: 點閱:80下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要討論蘭姆波在含有週期結構之薄板中傳遞的行為,設計兩種不同的週期結構,對其進行有限元素模擬,觀察週期結構的波傳特性並進行參數研究,最後透過實驗量測進行比較與驗證。

    數值模擬部分,首先觀察無結構均質薄板之波傳特性,並藉由不同傳遞模態的位移場特徵對模態進行分類,將頻帶結構中不屬於蘭姆波的色散曲線移除,以降低分析頻帶結構的難度。接著分別討論在薄板中週期排列圓洞以及圓柱體的結構,同樣將頻帶結構做模態篩選與分類後再行觀察,可以發現部分頻段沒有蘭姆波之色散曲線存在,即屬於蘭姆波之能隙,透過全波模擬打入特定模態的蘭姆波並計算穿透率可以驗證頻帶結構觀察到的能隙現象。最後分別對兩種週期結構進行幾何參數分析,觀察不同形成機制之能隙對幾何參數變化上的差異。

    實驗量測部分,本研究使用PVDF線聚焦壓電換能器量測系統進行量測,利用頻域量測法分析量測數據後可得到結構的頻帶結構峰值圖,圖中峰值連線即為傳遞波之色散曲線,對不同尺寸之圓洞與圓柱型試片進行量測,並將量測結果與數值模擬結果進行比對,以相互確認模擬與實驗結果之可信度。綜合模擬與實驗,本研究整合出一套聲子晶體平板的分析流程,有利於聲子晶體平板元件的設計。

    In this study, we discuss the behaviors of Lamb wave propagating on the plate with periodic structures, which are so-called phononic crystal plates. Two kinds of phononic crystal structures are considered, which are named “hole-type” and “pillar-type”, respectively. We employ finite element method to investigate the special wave propagating phenomena of the structure, such as band gaps and changes of wave velocity, then we utilize the experimental method, which is based on a PVDF line-focus transducer, to investigate the samples with these periodic structures, and compare the experimental results with numerical results.

    In the part of numerical simulation, we calculate the band structures of the plates with two kinds of phononic crystals, the band structures show the absence of specific Lamb wave modes dispersion curves in some frequency ranges, namely the band gaps of Lamb wave, and the mechanisms that lead to band gaps are discussed. We also do the geometric parameter analysis to further investigate the reaction of different band gaps and dispersion curves to the geometric parameters.

    In the part of experimental measurement, we use the experiment system with PVDF line-focus transducer to measure the samples that contain phononic crystal structures. The decrease of wave velocity and band gaps can be found in measurement results, which are consistent with simulation results. Based on this research, we can bulid a complete process of the analysis of phononic crystal plates.

    摘要 I Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 聲子晶體平板 2 1.2.2 超聲波顯微鏡量測技術 3 1.3 本文架構 5 第二章 基本理論、實驗建置與量測原理 6 2.1蘭姆波之理論解及其特性 6 2.2聲子晶體基本理論 8 2.2.1倒晶格(Reciprocal lattice) 8 2.2.2布洛赫定理(Bloch’s Theorem) 10 2.2.3 聲子晶體平板的數值計算方法 11 2.3 量測系統架構及量測流程 14 2.4 PVDF線聚焦式超聲波換能器 15 2.4.1換能器之構成與製作 15 2.4.2 換能器特性檢測 15 2.5 量測原理與數據分析方法 17 2.5.1 時域量測法 17 2.5.2 頻域量測法 19 第三章 蘭姆波與聲子晶體平板之模擬分析 31 3.1 均質薄板 31 3.1.1頻帶結構分析 31 3.1.2 模態判斷 32 3.2 圓洞型二維聲子晶體平板 35 3.2.1 頻帶結構分析與模態判斷 35 3.2.2 全波模擬與穿透率計算 37 3.2.3 晶格常數對能隙之影響 38 3.2.4 圓洞直徑對頻帶結構與能隙之影響 39 3.3 圓柱型二維聲子晶體平板 40 3.3.1 頻帶結構分析與模態判斷 40 3.3.2 全波模擬與穿透率計算 42 3.3.3晶格常數對能隙之影響 42 3.3.4圓柱體直徑對能隙之影響 43 3.3.5圓柱體高度對能隙之影響 43 第四章 聲子晶體平板之實驗量測 64 4.1量測試片準備 64 4.1.1週期結構尺寸設計考量 64 4.1.2 試片成品檢測與量測夾持方式 65 4.2 一般試件之實驗量測 66 4.2.1 塊材之量測結果 66 4.2.2均質薄板之量測結果 67 4.3 圓洞型聲子晶體平板之實驗量測 68 4.3.1實驗量測結果 68 4.3.2 圓洞直徑對量測結果之影響 69 4.4 圓柱型聲子晶體平板之實驗量測 70 4.4.1 實驗量測結果 70 4.4.2 修正模擬模型 72 4.4.3 晶格常數對量測結果之影響 73 4.4.4 圓柱直徑對量測結果之影響 74 4.4.5 波傳方向對量測結果之影響 75 第五章 結論與未來展望 95 5.1 結論 95 5.1.1 圓洞型聲子晶體平板之模擬分析 95 5.1.2 圓柱型聲子晶體平板之模擬分析 95 5.1.3 實驗量測 96 5.2 未來展望 96 參考文獻 97 附錄 100 A. 不同厚度均質薄板量測所得之峰值灰階圖 100 B. 不同圓洞直徑試片量測結果與模擬結果之比較 102 C. 不同尺寸圓柱型試片量測所得之峰值灰階圖 104 D. 圓柱型試片以不同角度量測所得之峰值灰階圖 108

    [1] C.-H. Yang, "Characterization of piezoelectrics using line-focus transducer," in Review of Progress in Quantitative Nondestructive Evaluation, ed: Springer, 1998, pp. 177-184.
    [2] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys Rev Lett, vol. 58, pp. 2059-2062, May 18 1987.
    [3] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites," Phys Rev Lett, vol. 71, pp. 2022-2025, Sep 27 1993.
    [4] J.-C. Hsu and T.-T. Wu, "Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates," Physical Review B, vol. 74, 2006.
    [5] Z. Hou and B. M. Assouar, "Modeling of Lamb wave propagation in plate with two-dimensional phononic crystal layer coated on uniform substrate using plane-wave-expansion method," Physics Letters A, vol. 372, pp. 2091-2097, 2008.
    [6] B. Bonello, C. Charles, and F. o. Ganot, "Lamb waves in plates covered by a two-dimensional phononic film," Applied Physics Letters, vol. 90, p. 021909, 2007.
    [7] S. Mohammadi, A. A. Eftekhar, A. Khelif, W. D. Hunt, and A. Adibi, "Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates," Applied Physics Letters, vol. 92, p. 221905, 2008.
    [8] S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, "High-Q micromechanical resonators in a two-dimensional phononic crystal slab," Applied Physics Letters, vol. 94, p. 051906, 2009.
    [9] T.-C. Wu, T.-T. Wu, and J.-C. Hsu, "Waveguiding and frequency selection of Lamb waves in a plate with a periodic stubbed surface," Physical Review B, vol. 79, 2009.
    [10] M. J. Chiou, Y. C. Lin, T. Ono, M. Esashi, S. L. Yeh, and T. T. Wu, "Focusing and waveguiding of Lamb waves in micro-fabricated piezoelectric phononic plates," Ultrasonics, vol. 54, pp. 1984-90, Sep 2014.
    [11] D. Xiang, N. Hsu, and G. Blessing, "The design, construction and application of a large aperture lens-less line-focus PVDF transducer," Ultrasonics, vol. 34, pp. 641-647, 1996.
    [12] D. Xiang, N. Hsu, and G. Blessing, "Materials characterization by a time-resolved and polarization-sensitive ultrasonic technique," in Review of Progress in Quantitative Nondestructive Evaluation, ed: Springer, 1996, pp. 1431-1438.
    [13] Y.-C. Lee, "Measurements of multimode leaky lamb waves propagating in metal sheets," Japanese Journal of Applied Physics, vol. 40, p. 359, 2001.
    [14] Y.-C. Lee and S.-P. Ko, "Measuring dispersion curves of acoustic waves using PVDF line-focus transducers," NDT & E International, vol. 34, pp. 191-197, 2001.
    [15] Y.-C. Lee and S.-W. Cheng, "Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating," IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 48, pp. 830-837, 2001.
    [16] 安和, "實驗觀測蘭姆波在聲子晶體板上的能隙帶," 碩士, 機械工程學系碩博士班, 國立成功大學, 台南市, 2012.
    [17] J. D. Achenbach, Wave propagation in elastic solids, 1973.
    [18] B. Graczykowski, M. Sledzinska, F. Alzina, J. Gomis-Bresco, J. S. Reparaz, M. R. Wagner, et al., "Phonon dispersion in hypersonic two-dimensional phononic crystal membranes," Physical Review B, vol. 91, 2015.
    [19] F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, and V. Laude, "Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals," Journal of Applied Physics, vol. 101, p. 044903, 2007.
    [20] F.-C. Hsu, J.-C. Hsu, T.-C. Huang, C.-H. Wang, and P. Chang, "Design of lossless anchors for microacoustic-wave resonators utilizing phononic crystal strips," Applied Physics Letters, vol. 98, p. 143505, 2011.
    [21] A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, "Complete band gaps in two-dimensional phononic crystal slabs," Phys Rev E Stat Nonlin Soft Matter Phys, vol. 74, p. 046610, Oct 2006.
    [22] T.-T. Wu, Y.-T. Chen, J.-H. Sun, S.-C. S. Lin, and T. J. Huang, "Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate," Applied Physics Letters, vol. 98, p. 171911, 2011.

    下載圖示 校內:2023-07-01公開
    校外:2023-07-01公開
    QR CODE