| 研究生: |
高翊庭 Kao, I-Ting |
|---|---|
| 論文名稱: |
以擔載碳化鉬觸媒共活化甲烷和氮氣並轉化為乙腈之研究 Co-activation Methane and Nitrogen to form Acetonitrile over Supported MoCx Catalysts |
| 指導教授: |
林裕川
Lin, Yu-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 乙腈 、碳化鉬 、甲烷 、氮氣 |
| 外文關鍵詞: | Acetonitrile, Molybdenum Carbide, Methane, Nitrogen |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲烷為導致全球暖化的氣體之一,為減緩全球暖化,將甲烷轉化為高經濟價值的化學品已成為重要的議題。另一方面,如何有效利用大氣中氮氣的方法也尚未被完全探討。乙腈 (Acetonitrile, ACN) 廣泛應用於多種領域如分析、醫藥、紡織等,本實驗室先前之研究發現可使用氮化鎵為觸媒將甲烷轉化為乙腈,但觸媒表面之可移動式氮將在反應中消耗。在此研究中,我們發現擔載碳化鉬 (MoCx) 催化劑可以同時活化甲烷和氮氣形成乙腈,並製備了一系列碳化鉬催化劑以分析物理化學性質,通過XRD和XAS鑑定催化劑的相態,以流通氮氣或氬氣測試甲烷轉化來驗證氮氣被活化並與甲烷反應形成乙腈。反應6小時後產率達到17.28 h-1並出現明顯的失活,推測失活為觸媒表面覆蓋的焦炭引起,為改善此不足,我們在氫氣、甲烷和氮氣共同進料的條件下進行反應,成功得到高穩定性的乙腈產量。根據 XPS以及參考文獻,推斷氫氣可以抑制焦炭的形成。最後,我們通過結合FT-IR光譜、N2-TPD和動力學分析的結果推測反應機制。
In this work, we found that supported molybdenum carbide (MoCx) catalysts can simultaneously activate methane and nitrogen to form acetonitrile (ACN). A series of MoCx catalysts were prepared and their physicochemical properties were analyzed, catalyst phase was confirmed by XRD and XAS, methane conversion was tested in either nitrogen or argon stream to verify that gaseous N2 was activated and reacted with CH4 to form ACN. After testing for 6 hours, the yield reached 17.28 h-1 and an apparent deactivation occurred. It was speculated that this deactivation was caused by coking. To obtain a stable ACN production, the reaction was conducted by co-feeding H2, CH4 and N2, showing a high stability in the production of ACN. Co-feeding H2 was found to be benefit to suppress coke formation. Finally, we revealed the reaction mechanism of CH4 and N2 co-activation by Mo2C catalyst by the combined results of FT-IR spectroscopy, N2-TPD and kinetic analysis.
(1) Trangwachirachai, K.; Chen, C.-H.; Huang, A.-L.; Lee, J.-F.; Chen, C.-L.; Lin, Y.-C. Conversion of methane to acetonitrile over GaN catalysts derived from gallium nitrate hydrate co-pyrolyzed with melamine, melem, or gC3N4: the influence of nitrogen precursors. Catalysis Science & Technology 2022, 12 (1), 320-331.
(2) Gong, X.; Meng, Y.; Zhu, J.; Wang, X.; Lu, J.; Cheng, Y.; Tao, Y.; Wang, H. Construct a stable super-hydrophobic surface through acetonitrile extracted lignin and nano-silica and its application in oil-water separation. Industrial Crops and Products 2021, 166, 113471.
(3) Zhu, B.; Xu, X.; Luo, J.; Jin, S.; Chen, W.; Liu, Z.; Tian, C. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC–MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent. Food Chemistry 2019, 276, 202-208.
(4) Dou, Q.; Lei, S.; Wang, D.-W.; Zhang, Q.; Xiao, D.; Guo, H.; Wang, A.; Yang, H.; Li, Y.; Shi, S.; et al. Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy & Environmental Science 2018, 11 (11), 3212-3219, 10.1039/C8EE01040D.
(5) Aljabour, A.; Coskun, H.; Apaydin, D. H.; Ozel, F.; Hassel, A. W.; Stadler, P.; Sariciftci, N. S.; Kus, M. Nanofibrous cobalt oxide for electrocatalysis of CO2 reduction to carbon monoxide and formate in an acetonitrile-water electrolyte solution. Applied Catalysis B: Environmental 2018, 229, 163-170.
(6) Rezaie, F.; Pirouzfar, V.; Alihosseini, A. Technical and economic analysis of acrylonitrile production from polypropylene. Thermal Science and Engineering Progress 2020, 16, 100463.
(7) Tripodi, A.; Bahadori, E.; Cespi, D.; Passarini, F.; Cavani, F.; Tabanelli, T.; Rossetti, I. Acetonitrile from Bioethanol Ammoxidation: Process Design from the Grass-Roots and Life Cycle Analysis. ACS Sustainable Chemistry & Engineering 2018, 6 (4), 5441-5451.
(8) Zhang, X.; Yuan, Z.; Yao, Q.; Zhang, Y.; Fu, Y. Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile. Bioresource Technology 2019, 290, 121800.
(9) Ayari, F.; Mhamdi, M.; Debecker, D. P.; Gaigneaux, E. M.; Alvarez-Rodriguez, J.; Guerrero-Ruiz, A.; Delahay, G.; Ghorbel, A. Effect of the chromium precursor nature on the physicochemical and catalytic properties of Cr–ZSM-5 catalysts: Application to the ammoxidation of ethylene. Journal of Molecular Catalysis A: Chemical 2011, 339 (1), 8-16.
(10) Schulz, H. Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis A: General 1999, 186 (1), 3-12.
(11) Dry, M. E. The Fischer–Tropsch process: 1950–2000. Catalysis Today 2002, 71 (3), 227-241.
(12) Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis 2015, 5 (3), 1922-1938.
(13) Olsbye, U.; Svelle, S.; Bjørgen, M.; Beato, P.; Janssens, T. V.; Joensen, F.; Bordiga, S.; Lillerud, K. P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition 2012, 51 (24), 5810-5831.
(14) Schwach, P.; Pan, X.; Bao, X. Direct Conversion of Methane to Value-Added Chemicals over Heterogeneous Catalysts: Challenges and Prospects. Chemical Reviews 2017, 117 (13), 8497-8520.
(15) Wang, L.; Tao, L.; Xie, M.; Xu, G.; Huang, J.; Xu, Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters 1993, 21, 35-41.
(16) Weckhuysen, B. M.; Wang, D.; Rosynek, M. P.; Lunsford, J. H. Conversion of methane to benzene over transition metal ion ZSM-5 zeolites: I. Catalytic characterization. Journal of catalysis 1998, 175 (2), 338-346.
(17) Yang, J.; Deng, F.; Zhang, M.; Luo, Q.; Ye, C. W/HZSM-5 catalyst for methane dehydroaromatization: a multinuclear MAS NMR study. Journal of Molecular Catalysis A: Chemical 2003, 202 (1-2), 239-246.
(18) Su, L.; Ma, D.; Liu, X.; Xu, Y.; Bao, X. Methane aromatization on Re/HZSM-5 system under non-oxygen condition. CHINESE JOURNAL OF CATALYSIS 2002, 23 (1), 41-45.
(19) Shu, Y.; Ohnishi, R.; Ichikawa, M. Improved methane dehydrocondensation reaction on HMCM-22 and HZSM-5 supported rhenium and molybdenum catalysts. Applied Catalysis A: General 2003, 252 (2), 315-329.
(20) Ma, D.; Shu, Y.; Han, X.; Liu, X.; Xu, Y.; Bao, X. Mo/HMCM-22 catalysts for methane dehydroaromatization: a multinuclear MAS NMR study. The Journal of Physical Chemistry B 2001, 105 (9), 1786-1793.
(21) Ma, D.; Zhang, W.; Shu, Y.; Liu, X.; Xu, Y.; Bao, X. MAS NMR, ESR and TPD studies of Mo/HZSM‐5 catalysts: evidence for the migration of molybdenum species into the zeolitic channels. Catalysis Letters 2000, 66, 155-160.
(22) Ma, D.; Wang, D.; Su, L.; Shu, Y.; Xu, Y.; Bao, X. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization: A TP technique investigation. Journal of Catalysis 2002, 208 (2), 260-269.
(23) Liu, H.; Shen, W.; Bao, X.; Xu, Y. Methane dehydroaromatization over Mo/HZSM-5 catalysts: the reactivity of MoCx species formed from MoOx associated and non-associated with Brönsted acid sites. Applied Catalysis A: General 2005, 295 (1), 79-88.
(24) Tempelman, C. H.; Hensen, E. J. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction. Applied Catalysis B: Environmental 2015, 176, 731-739.
(25) Ohnishi, R.; Liu, S.; Dong, Q.; Wang, L.; Ichikawa, M. Catalytic dehydrocondensation of methane with CO and CO2 toward benzene and naphthalene on Mo/HZSM-5 and Fe/Co-modified Mo/HZSM-5. Journal of Catalysis 1999, 182 (1), 92-103.
(26) Song, Y.; Xu, Y.; Suzuki, Y.; Nakagome, H.; Zhang, Z.-G. A clue to exploration of the pathway of coke formation on Mo/HZSM-5 catalyst in the non-oxidative methane dehydroaromatization at 1073 K. Applied Catalysis A: General 2014, 482, 387-396.
(27) Song, Y.; Xu, Y.; Suzuki, Y.; Nakagome, H.; Ma, X.; Zhang, Z.-G. The distribution of coke formed over a multilayer Mo/HZSM-5 fixed bed in H2 co-fed methane aromatization at 1073 K: Exploration of the coking pathway. Journal of Catalysis 2015, 330, 261-272.
(28) Keller, G. E.; Bhasin, M. M. Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts. Journal of Catalysis 1982, 73 (1), 9-19.
(29) Kondratenko, E.; Baerns, M. Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim 2008, 4, 6.
(30) Zhang, Z.; Verykios, X. E.; Baerns, M. Effect of electronic properties of catalysts for the oxidative coupling of methane on their selectivity and activity. Catalysis Reviews 1994, 36 (3), 507-556.
(31) Hao, J.; Schwach, P.; Li, L.; Guo, X.; Weng, J.; Zhang, H.; Shen, H.; Fang, G.; Huang, X.; Pan, X. Direct experimental detection of hydrogen radicals in non-oxidative methane catalytic reaction. Journal of Energy Chemistry 2021, 52, 372-376.
(32) Sakbodin, M.; Wu, Y.; Oh, S. C.; Wachsman, E. D.; Liu, D. Hydrogen‐permeable tubular membrane reactor: Promoting conversion and product selectivity for non‐oxidative activation of methane over an Fe©SiO2 catalyst. Angewandte Chemie 2016, 128 (52), 16383-16386.
(33) Liu, Y.; Liu, J. C.; Li, T. H.; Duan, Z. H.; Zhang, T. Y.; Yan, M.; Li, W. L.; Xiao, H.; Wang, Y. G.; Chang, C. R. Unravelling the enigma of nonoxidative conversion of methane on iron single‐atom catalysts. Angewandte Chemie 2020, 132 (42), 18745-18749.
(34) Liu, H. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese Journal of Catalysis 2014, 35 (10), 1619-1640.
(35) Seefeldt, L. C.; Hoffman, B. M.; Dean, D. R. Mechanism of Mo-dependent nitrogenase. Annual review of biochemistry 2009, 78, 701-722.
(36) Sgrignani, J.; Franco, D.; Magistrato, A. Theoretical studies of homogeneous catalysts mimicking nitrogenase. Molecules 2011, 16 (1), 442-465.
(37) Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coordination Chemistry Reviews 2013, 257 (17-18), 2551-2564.
(38) Guo, C.; Ran, J.; Vasileff, A.; Qiao, S.-Z. Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy & Environmental Science 2018, 11 (1), 45-56.
(39) Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. Acs Catalysis 2017, 7 (4), 2624-2643.
(40) Hara, M.; Kitano, M.; Hosono, H. Ru-loaded C12A7: e–electride as a catalyst for ammonia synthesis. ACS Catalysis 2017, 7 (4), 2313-2324.
(41) Guo, J.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3 (5), 709-712.
(42) Wang, Q.; Guo, J.; Chen, P. Recent progress towards mild-condition ammonia synthesis. Journal of Energy Chemistry 2019, 36, 25-36.
(43) Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis 2015, 328, 36-42.
(44) Aika, K.-i.; Hori, H.; Ozaki, A. Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal. Journal of Catalysis 1972, 27 (3), 424-431.
(45) Aika, K.; Ohya, A.; Ozaki, A.; Inoue, Y.; Yasumori, I. Support and promoter effect of ruthenium catalyst: II. Ruthenium/alkaline earth catalyst for activation of dinitrogen. Journal of catalysis 1985, 92 (2), 305-311.
(46) Wang, X.; Zhu, H.; Xia, W.; Liu, H. Z. Preparation and catalytic ofactive carbon-supported ruthenium catalyst for ammonia synthesis. Chin. J. Catal 2000, 21 (3), 276-278.
(47) Liang, C.; Wei, Z.; Xin, Q.; Li, C. Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds. Applied Catalysis A: General 2001, 208 (1-2), 193-201.
(48) Jacobsen, C. J.; Dahl, S.; Clausen, B. S.; Bahn, S.; Logadottir, A.; Nørskov, J. K. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. Journal of the American Chemical Society 2001, 123 (34), 8404-8405.
(49) Wang, D.; Lunsford, J. H.; Rosynek, M. P. Characterization of a Mo/ZSM-5 catalyst for the conversion of methane to benzene. Journal of Catalysis 1997, 169 (1), 347-358.
(50) Ramasubramanian, V.; Ramsurn, H.; Price, G. L. Methane dehydroaromatization – A study on hydrogen use for catalyst reduction, role of molybdenum, the nature of catalyst support and significance of Bronsted acid sites. Journal of Energy Chemistry 2019, 34, 20-32.
(51) Tempelman, C. H. L.; Hensen, E. J. M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatization reaction. Applied Catalysis B: Environmental 2015, 176-177, 731-739.
(52) Kojima, R.; Aika, K.-i. Molybdenum nitride and carbide catalysts for ammonia synthesis. Applied Catalysis A: General 2001, 219 (1), 141-147.
(53) Paganelli, S.; Tassini, R.; Rathod, V. D.; Onida, B.; Fiorilli, S.; Piccolo, O. A low rhodium content smart catalyst for hydrogenation and hydroformylation reactions. Catalysis Letters 2021, 151, 1508-1521.
(54) Sing, K. S.; Williams, R. T. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology 2004, 22 (10), 773-782.
(55) Ramos, M. J.; Casas, A.; Rodríguez, L.; Romero, R.; Perez, A. Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies. Applied Catalysis A: General 2008, 346 (1-2), 79-85.
(56) Bej, S. K.; Bennett, C. A.; Thompson, L. T. Acid and base characteristics of molybdenum carbide catalysts. Applied Catalysis A: General 2003, 250 (2), 197-208.
(57) Roy, P. K.; Kumar, S. Strong interfacial electronic interaction in the transition-metal/Mo2C catalyst for enhanced ammonia synthesis at ambient pressure: shift of the rate determining step. ACS Applied Energy Materials 2020, 3 (7), 7167-7179.
(58) Cholewinski, M. C.; Dixit, M.; Mpourmpakis, G. Computational study of methane activation on γ-Al2O3. ACS omega 2018, 3 (12), 18242-18250.
(59) Flaischlen, S.; Kutscherauer, M.; Wehinger, G. D. Local structure effects on pressure drop in slender fixed beds of spheres. Chemie Ingenieur Technik 2021, 93 (1-2), 273-281.
(60) Figueras, M.; Gutiérrez, R. A.; Prats, H.; Viñes, F.; Ramírez, P. J.; Illas, F.; Rodriguez, J. A. Boosting the activity of transition metal carbides towards methane activation by nanostructuring. Physical Chemistry Chemical Physics 2020, 22 (13), 7110-7118.
(61) Ma, H.; Kojima, R.; Kikuchi, S.; Ichikawa, M. Effective coke removal in methane to benzene (MTB) reaction on Mo/HZSM-5 catalyst by H2 and H2O co-addition to methane. Catalysis letters 2005, 104 (1-2), 63-66.
(62) Wu, C.; Li, J. Unique hierarchical Mo2C/C nanosheet hybrids as active electrocatalyst for hydrogen evolution reaction. ACS applied materials & interfaces 2017, 9 (47), 41314-41322.
(63) Regmi, Y. N.; Wan, C.; Duffee, K. D.; Leonard, B. M. Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst. ChemCatChem 2015, 7 (23), 3911-3915.
(64) Kong, X.; Chen, S.; Zou, Y.; Lyu, S.; She, X.; Lu, Y.; Sun, J.; Zhang, H.; Yang, D. Cellulose nanocrystals (CNC) derived Mo2C@ sulfur-doped carbon aerogels for hydrogen evolution. international journal of hydrogen energy 2018, 43 (30), 13720-13726.
(65) Vrubel, H.; Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angewandte Chemie International Edition 2012, 51 (ARTICLE), 12703-12706.
(66) Li, J.; Zhou, C.; Mu, J.; Yang, E.-C.; Zhao, X.-J. In situ synthesis of molybdenum carbide/N-doped carbon hybrids as an efficient hydrogen-evolution electrocatalyst. RSC advances 2018, 8 (31), 17202-17208.
(67) Wei, H.; Xi, Q.; Chen, X. a.; Guo, D.; Ding, F.; Yang, Z.; Wang, S.; Li, J.; Huang, S. Molybdenum carbide nanoparticles coated into the graphene wrapping n‐doped porous carbon microspheres for highly efficient electrocatalytic hydrogen evolution both in acidic and alkaline media. Advanced Science 2018, 5 (3), 1700733.
(68) Diao, L.; Qin, J.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; Li, J.; He, C. “Ethanol–water exchange” nanobubbles templated hierarchical hollow β-Mo2C/N-doped carbon composite nanospheres as an efficient hydrogen evolution electrocatalyst. Journal of Materials Chemistry A 2018, 6 (14), 6054-6064.
(69) Lei, Y.; Yang, Y.; Liu, Y.; Zhu, Y.; Jia, M.; Zhang, Y.; Zhang, K.; Yu, A.; Liu, J.; Zhai, J. Nitrogen-doped porous carbon nanosheets strongly coupled with Mo2C Nanoparticles for efficient electrocatalytic hydrogen evolution. Nanoscale Research Letters 2019, 14, 1-8.
(70) Wang, D.; Wang, J.; Luo, X.; Wu, Z.; Ye, L. In situ preparation of Mo2C nanoparticles embedded in ketjenblack carbon as highly efficient electrocatalysts for hydrogen evolution. ACS Sustainable Chemistry & Engineering 2018, 6 (1), 983-990.
(71) Xiao, P.; Ge, X.; Wang, H.; Liu, Z.; Fisher, A.; Wang, X. Novel molybdenum carbide–tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution. Advanced Functional Materials 2015, 25 (10), 1520-1526.
(72) Zhang, T.; Yang, X.; Ge, Q. A DFT study of methane conversion on Mo-terminated Mo2C carbides: Carburization vs C–C coupling. Catalysis Today 2021, 368, 140-147.
(73) Matanovic, I.; Garzon, F. H. Nitrogen electroreduction and hydrogen evolution on cubic molybdenum carbide: a density functional study. Physical Chemistry Chemical Physics 2018, 20 (21), 14679-14687.
(74) Trangwachirachai, K.; Huang, A.-L.; Chen, H.-K.; Chen, C.-L.; Lee, J.-F.; Tian, H.-K.; Lin, Y.-C. Reduction of supported GaN and its application in methane conversion. Materials Today Chemistry 2023, 30, 101500.
(75) Vollmer, I.; van Der Linden, B.; Ould-Chikh, S.; Aguilar-Tapia, A.; Yarulina, I.; Abou-Hamad, E.; Sneider, Y. G.; Suarez, A. I. O.; Hazemann, J.-L.; Kapteijn, F. On the dynamic nature of Mo sites for methane dehydroaromatization. Chemical Science 2018, 9 (21), 4801-4807.
(76) Li, G.; Vollmer, I.; Liu, C.; Gascon, J.; Pidko, E. A. Structure and reactivity of the Mo/ZSM-5 dehydroaromatization catalyst: an operando computational study. ACS Catalysis 2019, 9 (9), 8731-8737.
(77) Grunze, M.; Golze, M.; Hirschwald, W.; Freund, H.-J.; Pulm, H.; Seip, U.; Tsai, M.; Ertl, G.; Küppers, J. π-Bonded N2 on Fe (111): the precursor for dissociation. Physical review letters 1984, 53 (8), 850.
(78) Dahl, S.; Logadottir, A.; Egeberg, R.; Larsen, J.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru (0001). Physical Review Letters 1999, 83 (9), 1814.
(79) Mortensen, J. J.; Hansen, L. B.; Hammer, B.; Nørskov, J. K. Nitrogen adsorption and dissociation on Fe (111). Journal of Catalysis 1999, 182 (2), 479-488.
(80) Liao, W.; Qi, L.; Wang, Y.; Qin, J.; Liu, G.; Liang, S.; He, H.; Jiang, L. Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Advanced Functional Materials 2021, 31 (22), 2009151.
(81) Lee, J. S.; Lee, K. H.; Lee, J. Y. Selective chemisorption of carbon monoxide and hydrogen over supported molybdenum carbide catalysts. The Journal of Physical Chemistry 1992, 96 (1), 362-366.
(82) Zhang, T.; Yang, X.; Ge, Q. CH4 dissociation and CC coupling on Mo-terminated MoC surfaces: A DFT study. Catalysis Today 2020, 339, 54-61.
校內:2028-07-19公開