| 研究生: |
張志丞 Chang, Chih-Cheng |
|---|---|
| 論文名稱: |
彈液動潤滑下鍍層對基材之保護效果分析 Failure Analysis in a Coated Spherical Contact under EHL Condition |
| 指導教授: |
李旺龍
Li, Wong-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 彈液動潤滑 、鍍層材料應力分析 、硬鍍層弱化效應 |
| 外文關鍵詞: | elasto-hydrodynamic lubrication, von Mises stress, hard coating, soft coating, yielding strength |
| 相關次數: | 點閱:159 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代的進步,十八世紀的工業革命後機械開始被大量使用,幾乎所有機械設備裡都有軸承,而軸承作為支撐並減少摩擦損失的零件,其磨潤的需求與重要性日益增加;而為了得到更好的性能,往往會利用鍍層表面處理來改善其原本的性質;綜合以上兩點,探討在潤滑的情況下鍍層對零件之保護效果是相當重要的。
本研究建立出單層等向性鍍層材料的等效彈性模型,並使用有限元素分析法來處理流體與固體間的耦合問題,其統御方程式包括了雷諾方程式、線性彈性方程式與負載平衡方程式;在研究中我們改變鍍層的楊氏模數、負載、轉速及液體黏度,來探討在彈液動潤滑情況下這些改變對流體壓力、液膜厚度及內部應力的影響。
從分析結果可以看出,流體壓力及液膜壓力相當受鍍層楊氏模數主導,較硬的鍍層材料將使整體系統具有較高的液膜壓力及較明顯的二次峰值,較軟的鍍層材料則相反;且我們增加滑動速度及潤滑液黏度都可以達到降低整體von Mises應力的作用,不過會發生一個應力轉移的過程,最大應力將由鍍層轉移到基材內;更驚喜的發現硬鍍層彈液動系統在薄厚度時具有弱化效應,也就是整體材料只能承受比原基材還低的負載就發生降伏,而在持續增加厚度則可達到一個最佳鍍層厚度,此時整體材料將能承受一個極限負載值,若在繼續增厚則會降低材料所能承受之負載,而軟鍍層彈液動系統之降伏則是都將發生於鍍層內,且隨著軟鍍層厚度的增加而能承受更高的負載。
In this paper, a finite element analysis is used to find out the yield inception in a coated elasto-hydrodynamic lubrication(EHL) system. The yielding behaviors in dry contact were wildly investigated in many research. But people who use EHL system often forget to notice materials’ yielding strength. FEA software won’t stop calculating even if plastic deformation occurs, so EHL system won’t remain elastic deformation and final result might be wrong. The effect of various young’s modules, loads, speeds, lubricants and coating thickness will be discussed. As the result, the stiffer coating in EHL reduces the contact radius but increases the contact pressure. And it tend to make the pressure spike more apparently. The softer coating has the opposite results. It was surprisingly observed under some certain thickness of stiffer coating in EHL will increase the von Mises stress in coated substrate and even higher than in the pure substrate. As the stiffer coating thickness increase continually, the von Mises stress in coated substrate will reduce and even below the yielding strength of pure substrate. But softer coating performs in a different way. It will reduce the Von Mises in coated
substrate as long as a softer coating exists.
[1] H. Hertz, “Über die berührung fester elastischer Körper (On the contact of rigid elastic solids”, J. reine und angewandte Mathematik, vol 92, pp. 156–171, 1882.
[2] K. L. Johnson, K. Kendall, A. D. Roberts, “Surface energy and the contact of elastic solids”, Proc.R.Soc.Lond.A, vol 324, pp. 301-320, 1971.
[3] B. V. Derjaguin, V. M. Muller, Yu. P. Toporov, “Effect of contact deformations on the adhesion of particles”, Journal of Colloid and Interface Science, vol 53, pp. 314-326, 1975.
[4] D. Tabor, “Surface forces and surface interactions”, Journal of Colloid and Interface Science, vol 58, pp. 2-13, 1977.
[5] D. Maugis, “Adhesion of spheres: The JKR-DMT transition using a dugdale model”, Journal of Colloid and Interface Science, vol 150, pp. 243-269, 1992.
[6] O. Reynolds, “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil”, Proceedings of the Royal Society of London, vol 40, pp. 191-203, 1886.
[7] H. M. Martin, “Lubrication of Gear Teeth”, Engineering(London), vol 102, pp. 119-121, 1916.
[8] A. N. Grubin, I. E. Vinogradova, Investigation of the Contact of Machine Components, 1949.
[9] A. L. Petrusevich, “Fundamental conclusion from the contact-hydrodynamic theory of lubrication”, Izv. Akad. Nauk. SSSR, vol 2, pp. 209, 1951.
[10] H. Christensen, “The oil film in a closing gap”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 266, pp. 312-328, 1962.
[11] H. Christensen, “Elastohydrodynamic theory of spherical bodies in normal approach”, Journal of Lubrication Technology, vol. 92, pp. 145-153, 1970.
[12] R. T. Lee, B. J. Hamrock, “Squeeze and Entraining Motion in Nonconformal Line Contacts. Part I—Hydrodynamic Lubrication”, Journal of Tribology, vol. 111, pp. 1-7, 1989.
[13] R. T. Lee, B. J. Hamrock, “Squeeze and entraining motion in Nonconformal line contacts. Part II—Elastohydrodynamic lubrication”, Journal of tribology, vol. 111, pp. 8-16, 1989.
[14] A. Lubrecht, “The numerical solution of the elastohydrodynamically lubricated line and point contact problem, using multigrid techniques(Ph. D. Thesis”, 1987.
[15] A. Brandt, A. Lubrecht, “Multilevel matrix multiplication and fast solution of integral equations”, Journal of Computational Physics, vol. 90, pp. 348-370, 1990.
[16] K. Oh, S. Rohde, “Numerical solution of the point contact problem using the finite element method”, International Journal for Numerical Methods in Engineering, vol. 11, pp. 1507-1518, 1977.
[17] W. Habchi, D. Eyheramendy, P. Vergne, G. Morales-Espejel, “A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem”, Journal of Tribology, vol. 130, p. 021501, 2008.
[18] M. A. Sherbiney, J. Halling, “Friction and vear of ion-plated soft metallic films”, Wear, vol 45, pp. 211-220, 1977.
[19] J. M. Martin, C. Donnet, Th. Le. Mogne , Th. Epicier, “Superlubricity of molybdenum disulphide”, Phys Rev B, vol 48,pp. 10583-10586, 1993.
[20] Z. Wang, L. Wu, Y. Qi, W. Cai, Z. Jiang, “Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminiumalloy”, Surface and Coatings Technology, vol 204, pp. 3315-3318, 2010.
[21] A. Erdemir, C. Bindal, J. Pagan, P. Wilbur, “Characterization of transfer layers on steel surfaces sliding against diamond-like hydrocarbon films in dry nitrogen”, Surface and Coatings Technology, vol 76-77, pp. 559-563, 1995.
[22] D. He, S. Zheng, J. Pu, G. Zhang, L. Hu , “Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film”, Tribology International, vol 82, pp. 20-27, 2015.
[23] W. Grzesik, J. Małecka, Z. Zalisz, K. Zak, P. Niesłony, “Investigation of Friction and Wear Mechanisms of TiAlV Coated Carbide Against Ti6Al4V Titanium Alloy Using Pin-On-Disc Tribometer”, Archive of Mechanical Engineering, vol 63, pp. 113-127, 2016.
[24] H. Tresca, “Mémoire sur l'écoulement des corps solides soumis à de fortes pressions”, C.R. Académie des Sciences de Paris, vol 59, p 754, 1864.
[25] M.T. Huber, “Zur Theorie der Berührung fester elastischer Körper”, Annalen der Physik, vol 319, pp. 153-163, 1904.
[26] H. Hencky, “Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen”, Zeitschrift für angevandte Mathematik und Mechanik, vol 4, pp. 323-335, 1924.
[27] E.J. Abbott, F.A. Firestone, “Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison”, Journal of Mechanical Engineering, vol 55, pp. 569-572, 1933.
[28] S. Timoshenko, J.N. Goodier, Theory of Elasticity, 1951.
[29] J.A. Greenwood, J.B.P. Williamson, “Contact of nominally flat surfaces”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical, vol 295, pp. 300-319, 1966.
[30] W.R. Chang, I. Etsion, D.B. Bogy, “An Elastic-Plastic Model for the Contact of Rough Surfaces”, Journal of Tribology, vol 109, pp. 257-263, 1987.
[31] L. Kogut, I. Etsion, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat”, Journal of Applied Mechanics, vol 69, pp. 657-662, 2002.
[32] R.L. Jackson, I. Green, “A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat”, Journal of Tribology, vol 27, pp. 343-354, 2005.
[33] V. Brizmer, Y. Kligerman, I. Etsion, “The effect of contact conditions and material properties on the elasticity terminus of a spherical contact”, International Journal of Solids and Structures, vol 43, pp. 5736-5749, 2006.
[34] L. Li , I. Etsion , A. Ovcharenko, F.E. Talke, “The Onset of plastic yielding in a spherical shell compressed by a rigid flat”, Journal of Applied Mechanics, vol 78, 011016, 2011.
[35] R. Goltsberg, I. Etsion, G. Davidi, “The onset of plastic yielding in a coated sphere compressed by a rigid flat”, Wear, vol 271, pp. 2968-2977, 2011.
[36] R. Goltsberg, I. Etsion, “A model for the weakening effect of very thin hard coatings”, Wear, vol 308, pp. 10-16, 2013.
[37] W. Song, L. Li, I. Etsion, A. Ovcharenko. F. E. Talke, “Yield inception of a soft coating on a flat substrate indented by a rigid sphere”, Surface and Coatings Technology, vol 240, pp. 444-449, 2014.
[38] Z. Chen, R. Goltsberg, I. Etsion, “Plasticity evolution in a coated sphere compressed by a rigid flat”, Tribology International, vol 98, pp. 116-124, 2016.
[39] R. Goltsberg, S. Levy, Y. Kligerman, I. Etsion, “Strengthening Effect of Soft Thin Coatings”, Journal of Tribology, vol 140, 064501, 2018.
[40] Z. Chen, R. Goltsberg, I. Etsion, “Yield modes in a coated spherical contact”, Tribology International, vol 120, pp. 309-316, 2018.
[41] C. Barus, “Isothermal, isopiestics and isometrics relative to viscosity”, American journal of science, vol 45, pp. 87-96, 1893.
[42] C. Roelands, “Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils”, University of Groningen, Netherlands, 1966.
[43] D, Dowson, G. R. Higginson, Elasto-Hydrodynamic Lubrication : The Fundamentals of Roller and Gear Lubrication, Pergamon Press, Oxford. 1966.
[44] S. R. Wu, “A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication”, International Journal of Engineering Science, vol 24, pp. 1001-1013, 1986.
[45] R. Goltsberg, I. Etsion, G. Davidi, “The onset of plastic yielding in a coated sphere compressed by a rigid flat”, Wear, vol 271, pp. 2968-2977, 2011.
[46] Q.D. Chen, H.C. Jao, L.M. Chu, W.L. Li, “Effects of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts”, Journal of Tribology, vol 138, pp. 031502, 2016.
校內:2020-08-15公開