簡易檢索 / 詳目顯示

研究生: 張志丞
Chang, Chih-Cheng
論文名稱: 彈液動潤滑下鍍層對基材之保護效果分析
Failure Analysis in a Coated Spherical Contact under EHL Condition
指導教授: 李旺龍
Li, Wong-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 94
中文關鍵詞: 彈液動潤滑鍍層材料應力分析硬鍍層弱化效應
外文關鍵詞: elasto-hydrodynamic lubrication, von Mises stress, hard coating, soft coating, yielding strength
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的進步,十八世紀的工業革命後機械開始被大量使用,幾乎所有機械設備裡都有軸承,而軸承作為支撐並減少摩擦損失的零件,其磨潤的需求與重要性日益增加;而為了得到更好的性能,往往會利用鍍層表面處理來改善其原本的性質;綜合以上兩點,探討在潤滑的情況下鍍層對零件之保護效果是相當重要的。
    本研究建立出單層等向性鍍層材料的等效彈性模型,並使用有限元素分析法來處理流體與固體間的耦合問題,其統御方程式包括了雷諾方程式、線性彈性方程式與負載平衡方程式;在研究中我們改變鍍層的楊氏模數、負載、轉速及液體黏度,來探討在彈液動潤滑情況下這些改變對流體壓力、液膜厚度及內部應力的影響。
    從分析結果可以看出,流體壓力及液膜壓力相當受鍍層楊氏模數主導,較硬的鍍層材料將使整體系統具有較高的液膜壓力及較明顯的二次峰值,較軟的鍍層材料則相反;且我們增加滑動速度及潤滑液黏度都可以達到降低整體von Mises應力的作用,不過會發生一個應力轉移的過程,最大應力將由鍍層轉移到基材內;更驚喜的發現硬鍍層彈液動系統在薄厚度時具有弱化效應,也就是整體材料只能承受比原基材還低的負載就發生降伏,而在持續增加厚度則可達到一個最佳鍍層厚度,此時整體材料將能承受一個極限負載值,若在繼續增厚則會降低材料所能承受之負載,而軟鍍層彈液動系統之降伏則是都將發生於鍍層內,且隨著軟鍍層厚度的增加而能承受更高的負載。

    In this paper, a finite element analysis is used to find out the yield inception in a coated elasto-hydrodynamic lubrication(EHL) system. The yielding behaviors in dry contact were wildly investigated in many research. But people who use EHL system often forget to notice materials’ yielding strength. FEA software won’t stop calculating even if plastic deformation occurs, so EHL system won’t remain elastic deformation and final result might be wrong. The effect of various young’s modules, loads, speeds, lubricants and coating thickness will be discussed. As the result, the stiffer coating in EHL reduces the contact radius but increases the contact pressure. And it tend to make the pressure spike more apparently. The softer coating has the opposite results. It was surprisingly observed under some certain thickness of stiffer coating in EHL will increase the von Mises stress in coated substrate and even higher than in the pure substrate. As the stiffer coating thickness increase continually, the von Mises stress in coated substrate will reduce and even below the yielding strength of pure substrate. But softer coating performs in a different way. It will reduce the Von Mises in coated
    substrate as long as a softer coating exists.

    目錄 中文摘要 I Extend Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XVII 符號總表 XX 第一章 緒論 1 1-1 緒論 1 1-2 文獻回顧 2 1-2-1 接觸理論 2 1-2-2 彈液動潤滑 3 1-2-3 表面鍍層介紹 5 1-2-4 降伏發生位置 5 1-3 研究動機與目的 7 1-4 本文內容與架構 8 第二章 基礎理論 13 2-1赫茲接觸理論 13 2-2彈液動潤滑 18 2-2-1雷諾方程式 18 2-2-2液膜厚度方程式 30 2-2-3 液膜黏度與壓力之關係 30 2-2-4 液膜密度與壓力之關係 31 2-2-5 Penalty方法 32 2-3 彈性變形方程式 32 2-4 負載平衡方程式 35 2-5 von Mises應力準則 35 第三章 數值方法 44 3-1 有限元素分析法 44 3-1-1 Galerkin方法 44 3-1-2 離散公式 45 3-1-3 運算方法-Newton Raphson法 45 3-2 模擬分析流程 48 第四章 結果與討論 51 4-1 網格測試 51 4-2 模擬驗證 55 4-3 鍍層/基材彈液動潤滑分析 57 4-3-1楊氏模數之影響 58 4-3-2 鍍層厚度之影響 59 4-3-3 負載之影響 59 4-3-4 滑動速度之影響 60 4-3-5 潤滑液黏度之影響 60 4-4 內部應力分析 62 4-4-1 楊氏模數之影響 62 4-4-2 鍍層厚度及負載之影響 63 4-4-3 滑動速度之影響 64 4-4-4 潤滑液黏度之影響 65 4-4-5 降伏負載分析 66 第五章 結論與展望 84 5-1 結論 84 第一部分:彈液動潤滑問題 84 第二部分:內部應力分析 86 總結 87 5-2 未來展望 88 參考文獻 89   表目錄 表1- 1 JKR模型、DMT模型、Maugis模型的比較 10 表1- 2 Tresca與von Mises降伏準則比較 12 表 4- 1 不同網格密度之尺寸表 51 表 4- 2 網格測試之液膜壓力點相對誤差 52 表 4- 3網格測試之von Mises點相對誤差 53 表 4- 4 最終之網格尺寸比較 54 表 4- 5 最終網格密度與編號7之液膜壓力相對誤差 54 表 4- 6 最終網格密度與編號7之von Mises相對誤差 55 表 4- 7 Chen等人[46]所使用之模擬參數 57   圖目錄 圖 1- 1具有不同鍍層之彈液動潤滑分析流程示意圖 9 圖 2- 1 Hertz接觸示意圖 37 圖 2- 2在O點接觸之非協調表面 37 圖 2- 3作用於圓形域上的壓力、位移 38 圖 2- 4 含鍍層材料之彈液動潤滑示意圖 38 圖 2- 5控制體之質量流量 39 圖 2- 6控制體之應力分量 39 圖 2- 7液膜厚度示意圖 40 圖 2- 8流體黏度與壓力關係,Barus與Roelands模型 40 圖 2- 9流體密度與壓力關係,Dowson-Higginson模型 41 圖 2- 10 Penalty方法對流體壓力分佈的影響 41 圖 2- 11 平面應力之von Mises降伏準則 42 圖 3- 1 有限元素模擬分析流程圖 48 圖 3-2 二維潤滑接觸區域Ωc 49 圖 3- 3 三維彈性變形區域 49 圖 3- 4 牛頓法的迭代求解過程示意圖 50 圖 4- 1 模型網格尺寸示意圖 67 圖 4- 2 網格測試之固定點 67 圖 4- 3網格編號8之具有鍍層的z軸von Mises壓力 68 圖 4- 4最終網格之具有鍍層的z軸von Mises壓力 68 圖 4- 5驗證Goltsberg等人[45]之乾接觸部分 69 圖 4- 6驗證Chen等人[46]之彈液動潤滑部分 69 圖 4- 7定負載、定鍍層厚度之不同材料的液膜厚度及壓力分佈 70 圖 4- 8定負載、不同鍍層厚度下之具有硬鍍層材料的壓力分佈及液膜厚度 70 圖 4- 9定負載、不同鍍層厚度下之具有軟鍍層材料的壓力分佈及液膜厚度 71 圖 4- 10純基材材料在不同負載下之液膜壓力分佈及液膜厚度 71 圖 4- 11純硬鍍層材料在不同負載下之液膜壓力分佈及液膜厚度 72 圖 4- 12純軟鍍層材料在不同負載下之液膜壓力分佈及液膜厚度 72 圖 4- 13三種材料在不同負載下之最大液膜壓力 73 圖 4- 14三種材料在不同負載下之最小液膜厚度 73 圖 4- 15不同材料在同負載不同滑動速度下最大液膜壓力 74 圖 4- 16不同材料在同負載不同滑動速度下最小液膜厚度 74 圖 4- 17 不同材料在不同潤滑液黏度下最大液膜壓力 75 圖 4- 18 不同材料在不同潤滑液黏度下最小液膜厚度 75 圖 4- 19 10N壓力下不同材料之z軸von Mises 76 圖 4- 20 不同負載下三種純材料之最大von Mises應力 76 圖 4- 21 2N負載下不同硬鍍層厚度之材料的z軸von Mises應力分佈 77 圖 4- 22 2N負載下不同硬鍍層厚度之材料的最大von Mises應力 77 圖 4- 23 2N負載下不同軟鍍層厚度之材料的z軸von Mises應力分佈 78 圖 4- 24 2N負載下不同軟鍍層厚度之材料的最大von Mises應力 78 圖 4- 25固定硬鍍層厚度下不同負載之材料的von Mises應力 79 圖 4- 26固定軟鍍層厚度下不同負載之材料的von Mises應力 79 圖 4- 27 純材料在定負載下不同滑動速度之最大von Mises應力 80 圖 4- 28 具有硬鍍層的材料在定負載不同滑動速度之最大von Mises應力 80 圖 4- 29 具有軟鍍層的材料在定負載下不同滑動速度之最大von Mises應力 81 圖 4- 30 純材料在定負載下不同潤滑液黏度下之最大von Mises應力 81 圖 4- 31具有硬鍍層的材料在定負載下不同黏度之最大von Mises應力 82 圖 4- 32具有軟鍍層的材料在定負載下不同黏度之最大von Mises應力 82 圖 4- 33具有不同硬鍍層厚度的材料之降伏發生時的負載及位置 83 圖 4- 34具有不同軟鍍層厚度的材料之降伏發生時的負載及位置 83

    [1] H. Hertz, “Über die berührung fester elastischer Körper (On the contact of rigid elastic solids”, J. reine und angewandte Mathematik, vol 92, pp. 156–171, 1882.
    [2] K. L. Johnson, K. Kendall, A. D. Roberts, “Surface energy and the contact of elastic solids”, Proc.R.Soc.Lond.A, vol 324, pp. 301-320, 1971.
    [3] B. V. Derjaguin, V. M. Muller, Yu. P. Toporov, “Effect of contact deformations on the adhesion of particles”, Journal of Colloid and Interface Science, vol 53, pp. 314-326, 1975.
    [4] D. Tabor, “Surface forces and surface interactions”, Journal of Colloid and Interface Science, vol 58, pp. 2-13, 1977.
    [5] D. Maugis, “Adhesion of spheres: The JKR-DMT transition using a dugdale model”, Journal of Colloid and Interface Science, vol 150, pp. 243-269, 1992.
    [6] O. Reynolds, “On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil”, Proceedings of the Royal Society of London, vol 40, pp. 191-203, 1886.
    [7] H. M. Martin, “Lubrication of Gear Teeth”, Engineering(London), vol 102, pp. 119-121, 1916.
    [8] A. N. Grubin, I. E. Vinogradova, Investigation of the Contact of Machine Components, 1949.
    [9] A. L. Petrusevich, “Fundamental conclusion from the contact-hydrodynamic theory of lubrication”, Izv. Akad. Nauk. SSSR, vol 2, pp. 209, 1951.
    [10] H. Christensen, “The oil film in a closing gap”, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 266, pp. 312-328, 1962.
    [11] H. Christensen, “Elastohydrodynamic theory of spherical bodies in normal approach”, Journal of Lubrication Technology, vol. 92, pp. 145-153, 1970.
    [12] R. T. Lee, B. J. Hamrock, “Squeeze and Entraining Motion in Nonconformal Line Contacts. Part I—Hydrodynamic Lubrication”, Journal of Tribology, vol. 111, pp. 1-7, 1989.
    [13] R. T. Lee, B. J. Hamrock, “Squeeze and entraining motion in Nonconformal line contacts. Part II—Elastohydrodynamic lubrication”, Journal of tribology, vol. 111, pp. 8-16, 1989.
    [14] A. Lubrecht, “The numerical solution of the elastohydrodynamically lubricated line and point contact problem, using multigrid techniques(Ph. D. Thesis”, 1987.
    [15] A. Brandt, A. Lubrecht, “Multilevel matrix multiplication and fast solution of integral equations”, Journal of Computational Physics, vol. 90, pp. 348-370, 1990.
    [16] K. Oh, S. Rohde, “Numerical solution of the point contact problem using the finite element method”, International Journal for Numerical Methods in Engineering, vol. 11, pp. 1507-1518, 1977.
    [17] W. Habchi, D. Eyheramendy, P. Vergne, G. Morales-Espejel, “A Full-System Approach of the Elastohydrodynamic Line/Point Contact Problem”, Journal of Tribology, vol. 130, p. 021501, 2008.
    [18] M. A. Sherbiney, J. Halling, “Friction and vear of ion-plated soft metallic films”, Wear, vol 45, pp. 211-220, 1977.
    [19] J. M. Martin, C. Donnet, Th. Le. Mogne , Th. Epicier, “Superlubricity of molybdenum disulphide”, Phys Rev B, vol 48,pp. 10583-10586, 1993.
    [20] Z. Wang, L. Wu, Y. Qi, W. Cai, Z. Jiang, “Self-lubricating Al2O3/PTFE composite coating formation on surface of aluminiumalloy”, Surface and Coatings Technology, vol 204, pp. 3315-3318, 2010.
    [21] A. Erdemir, C. Bindal, J. Pagan, P. Wilbur, “Characterization of transfer layers on steel surfaces sliding against diamond-like hydrocarbon films in dry nitrogen”, Surface and Coatings Technology, vol 76-77, pp. 559-563, 1995.
    [22] D. He, S. Zheng, J. Pu, G. Zhang, L. Hu , “Improving tribological properties of titanium alloys by combining laser surface texturing and diamond-like carbon film”, Tribology International, vol 82, pp. 20-27, 2015.
    [23] W. Grzesik, J. Małecka, Z. Zalisz, K. Zak, P. Niesłony, “Investigation of Friction and Wear Mechanisms of TiAlV Coated Carbide Against Ti6Al4V Titanium Alloy Using Pin-On-Disc Tribometer”, Archive of Mechanical Engineering, vol 63, pp. 113-127, 2016.
    [24] H. Tresca, “Mémoire sur l'écoulement des corps solides soumis à de fortes pressions”, C.R. Académie des Sciences de Paris, vol 59, p 754, 1864.
    [25] M.T. Huber, “Zur Theorie der Berührung fester elastischer Körper”, Annalen der Physik, vol 319, pp. 153-163, 1904.
    [26] H. Hencky, “Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen”, Zeitschrift für angevandte Mathematik und Mechanik, vol 4, pp. 323-335, 1924.
    [27] E.J. Abbott, F.A. Firestone, “Specifying Surface Quality-A Method Based on Accurate Measurement and Comparison”, Journal of Mechanical Engineering, vol 55, pp. 569-572, 1933.
    [28] S. Timoshenko, J.N. Goodier, Theory of Elasticity, 1951.
    [29] J.A. Greenwood, J.B.P. Williamson, “Contact of nominally flat surfaces”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical, vol 295, pp. 300-319, 1966.
    [30] W.R. Chang, I. Etsion, D.B. Bogy, “An Elastic-Plastic Model for the Contact of Rough Surfaces”, Journal of Tribology, vol 109, pp. 257-263, 1987.
    [31] L. Kogut, I. Etsion, “Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat”, Journal of Applied Mechanics, vol 69, pp. 657-662, 2002.
    [32] R.L. Jackson, I. Green, “A Finite Element Study of Elasto-Plastic Hemispherical Contact Against a Rigid Flat”, Journal of Tribology, vol 27, pp. 343-354, 2005.
    [33] V. Brizmer, Y. Kligerman, I. Etsion, “The effect of contact conditions and material properties on the elasticity terminus of a spherical contact”, International Journal of Solids and Structures, vol 43, pp. 5736-5749, 2006.
    [34] L. Li , I. Etsion , A. Ovcharenko, F.E. Talke, “The Onset of plastic yielding in a spherical shell compressed by a rigid flat”, Journal of Applied Mechanics, vol 78, 011016, 2011.
    [35] R. Goltsberg, I. Etsion, G. Davidi, “The onset of plastic yielding in a coated sphere compressed by a rigid flat”, Wear, vol 271, pp. 2968-2977, 2011.
    [36] R. Goltsberg, I. Etsion, “A model for the weakening effect of very thin hard coatings”, Wear, vol 308, pp. 10-16, 2013.
    [37] W. Song, L. Li, I. Etsion, A. Ovcharenko. F. E. Talke, “Yield inception of a soft coating on a flat substrate indented by a rigid sphere”, Surface and Coatings Technology, vol 240, pp. 444-449, 2014.
    [38] Z. Chen, R. Goltsberg, I. Etsion, “Plasticity evolution in a coated sphere compressed by a rigid flat”, Tribology International, vol 98, pp. 116-124, 2016.
    [39] R. Goltsberg, S. Levy, Y. Kligerman, I. Etsion, “Strengthening Effect of Soft Thin Coatings”, Journal of Tribology, vol 140, 064501, 2018.
    [40] Z. Chen, R. Goltsberg, I. Etsion, “Yield modes in a coated spherical contact”, Tribology International, vol 120, pp. 309-316, 2018.
    [41] C. Barus, “Isothermal, isopiestics and isometrics relative to viscosity”, American journal of science, vol 45, pp. 87-96, 1893.
    [42] C. Roelands, “Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils”, University of Groningen, Netherlands, 1966.
    [43] D, Dowson, G. R. Higginson, Elasto-Hydrodynamic Lubrication : The Fundamentals of Roller and Gear Lubrication, Pergamon Press, Oxford. 1966.
    [44] S. R. Wu, “A Penalty Formulation and Numerical Approximation of the Reynolds-Hertz Problem of Elastohydrodynamic Lubrication”, International Journal of Engineering Science, vol 24, pp. 1001-1013, 1986.
    [45] R. Goltsberg, I. Etsion, G. Davidi, “The onset of plastic yielding in a coated sphere compressed by a rigid flat”, Wear, vol 271, pp. 2968-2977, 2011.
    [46] Q.D. Chen, H.C. Jao, L.M. Chu, W.L. Li, “Effects of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts”, Journal of Tribology, vol 138, pp. 031502, 2016.

    無法下載圖示 校內:2020-08-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE