| 研究生: |
吳怡葇 Wu, Yi-Jou |
|---|---|
| 論文名稱: |
替代能源應用於私有運具之環境效益評估 The Environmental Efficiency Evaluation of Private Vehicles with Alternative Energies |
| 指導教授: |
張瀞之
Chang, Ching-Chih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 替代能源 、生命週期評估法(LCA) 、私有運具 、溫室氣體 、細懸浮微粒(PM2.5) 、外部環境健康成本 |
| 外文關鍵詞: | Alternative energy, External Environmental Health Cost, GHG and PM2.5emission, Life Cycle Assessment, Private vehicles |
| 相關次數: | 點閱:165 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來臺灣私有運具之使用加劇了溫室效應與空氣汙染,造成環境衝擊及影響到人類健康。本研究以臺灣私有運具能源面為研究對象,探討替代能源(風力發電、水力發電、太陽能發電與氫能)及傳統能源(能源火力燃煤發電、天然氣發電與汽油)生命週期碳足跡溫室氣體排放,藉此提出減排策略,評估若實施減排策略後,臺灣2030年及2050年溫室氣體及細懸浮微粒(PM2.5)是否能落實《國家自訂預期貢獻》與《溫室氣體減量及管理法》之排放規範。最後探討隨著替代能源比例提升,運用失能調整生命年(Disability Adjusted Life Year)為換算外部環境健康成本單位基礎,藉以判斷因細懸浮微粒(PM2.5)所造成的失能調整生命年,以瞭解私有運具外部環境健康成本改善幅度。
研究結果顯示,替代能源中以風能排放最低其次分別為水力發電、氫能與太陽能;傳統能源以火力燃煤發電排放最高,其次為天然氣與汽油。 2030年使用30%低排放車輛取代汽油車及使用35%替代能源與65%傳統能源,溫室氣體排放量比2005年(BAU2005)減少607.99萬公噸(約21%)。PM2.5排放量比2005年(BAU2005)減少403.72公噸(約28%),外部環境健康成本比基礎情境(BAU2030)改善 188.79DALY (約22%),亦及 188.79 個失能調整生命年。2050年使用60%低排放車輛取代汽油車及使用 86%替代能源與14%傳統能源,溫室氣體排放量比2005年(BAU2005)減少1804.28萬公噸(約61%)。PM2.5排放量比2005年(BAU2005)減少865.42公噸(約59%),外部環境健康成本比基礎情境(BAU2050)改善 447.31DALY (約55%),亦即447.31 個失能調整生命年。總結研究結果,臺灣私有運具未來若能以替代能源取代傳統能源,將能夠大幅減少臺灣全球暖化及空氣汙染,進而提升臺灣人民之健康品質。
This study examines the life cycle carbon footprint of greenhouse gases and PM2.5 emissions of alternative energies (wind power, hydropower, solar energy, and hydrogen energy) and of traditional energies (coal-fired power, natural gas, and gasoline) and proposes mitigation strategies to reduce global warming and the air pollution caused by Taiwan’s private vehicles. The study then assesses the degree to which emissions are reduced if the goals of Taiwan’s the Intended Nationally Determined Contribution and the Greenhouse Gas Reduction and Management Act mitigation strategies are met by 2030 and 2050. Finally, the study explores the external environmental health costs of the private vehicle (based on Disability-Adjusted Life Year) and the degree to which improvements occur.
Results show that wind power has the lowest level of greenhouse gas emissions and coal-fired power has the highest. The mitigation strategy for 2030 means that low-emission vehicles will replace 30% of gasoline vehicles, and using 35% of alternative energies and 65% of traditional energies; GHG emissions and PM2.5 will decrease by 6,079,900 tons and 403.72 tons compared to 2005; and external environmental health costs will improve by 188.79 DALY compared with BAU2030. In 2050, low-emissions vehicles will replace 60% of gasoline vehicles; 86% of traditional energy will replace alternative energy; GHG and PM2.5 emissions will decrease by 18,042,800 tons and 403.72 tons compared to 2005; and external environmental health costs will improve by 447.31 DALY compared with BAU2050.
中文文獻
台灣電力公司. (2019). 再生能源發電概況, from https://www.taipower.com.tw/tc/page.aspx?mid=204=g hgact
吳宗翰. (2010). 利用生命週期理論評析燃煤電廠溫室氣體排放量之研究,淡江大學水資源及環境工程學系碩士班學位論文.
財政部. (2017). 電動汽車免徵牌照稅, from https://www.dot.gov.tw/ch/home.jsp?id=26&parentpath=0,9&mcustomize=taxnews_view.jsp&dataserno=201712060002&t=TaxNews&mserno=201707060001
曾詠恩 (2006). 臺灣地區風力發電之潛力分析與生命週期評估, 國立臺北大學自然資源與環境管理所碩士論文.
經濟部能源局(2019). 我國燃料燃燒二氧化碳排放統計與分析
環保署(2015) 國家自定預期貢獻(Intended Nationally Determined Contribution, INDC), from https://enews.epa.gov.tw/enews/enews_ftp/104/1117/174044/%E4%B8%AD%E8%8F%AF%E6%B0%91%E5%9C%8B%EF%BC%88%E8%87%BA%E7%81%A3%EF%BC%89%E3%80%8C%E5%9C%8B%E5%AE%B6%E8%87%AA%E5%AE%9A%E9%A0%90%E6%9C%9F%E8%B2%A2%E7%8D%BB%E3%80%8D(INDC).pdf
環保署. (2015). 溫 室 氣 體 減 量 及 管 理 法,from https://www.epa.gov.tw/lp.asp?ctNode=34546&CtUnit=2525&BaseDSD=7&mp
環保署.(2019). 溫室氣體排放統計, from https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b%E3%80%80
英文文獻
Abdin, Z., & Mérida, W. (2019). Hybrid energy systems for off-grid power supply and hydrogen production based on renewable energy: A techno-economic analysis. Energy Conversion and Management, 196, 1068-1079.
Ahmadi, P. (2019). Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. Journal of Cleaner Production, 225, 1209-1219.
Atilgan, B., & Azapagic, A. (2016). Renewable electricity in Turkey: Life cycle environmental impacts. Renewable Energy, 89, 649-657.
Agrawal.,Jain (2013). Assessment of greenhouse gas emissions from coal and natural gas thermal power plants using life cycle approach. International journal of Environmental Science and Technology.
Ayodele, T. R., Alao, M. A., Ogunjuyigbe, A. S. O., & Munda, J. L. (2019). Electricity generation prospective of hydrogen derived from biogas using food waste in south-western Nigeria. Biomass and Bioenergy, 127.
Bachmann, T. M., & van der Kamp, J. (2017). Expressing air pollution-induced health-related externalities in physical terms with the help of DALY. Environ Int, 103, 39-50. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28376353.
Burchart-Korol, D., Jursova, S., Folęga, P., Korol, J., Pustejovska, P., & Blaut, A. (2018). Environmental life cycle assessment of electric vehicles in Poland and the Czech Republic. Journal of Cleaner Production, 202, 476-487.
Danthurebandara, M., & Rajapaksha, L. (2019). Environmental consequences of different electricity generation mixes in Sri Lanka by 2050. Journal of Cleaner Production, 210, 432-444.
EEA. (2019). Air quality in Europe - 2019 report., from https://www.eea.europa.eu/publications/air-quality-in-europe-2019
EEA. (2018). CO2 emission intensity, from https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5#tab-based-on-linked-open-data24. Renewable energy in Europe-2018,https://www.eea.europa.eu/publications/renewable-energy-in-europe-2018#tab-data-references
EEA. (2018). Renewable energy in Europe - 2018, from https://www.eea.europa.eu/publications/renewable-energy-in-europe-2018
Flury, Frischknecht(2012). Life Cycle Inventories of Hydroelectric Power Generation.ESU-services.
Gao, M., Beig, G., Song, S., Zhang, H., Hu, J., Ying, Q., . . . McElroy, M. B. (2018). The impact of power generation emissions on ambient PM2.5 pollution and human health in China and India. Environ Int, 121(Pt 1), 250-259. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30223201.
Galetovic, A., & Muñoz, C. M. (2013). Wind, coal, and the cost of environmental externalities. Energy Policy, 62, 1385-1391.
Gao, C.-k., Na, H.-m., Song, K.-h., Dyer, N., Tian, F., Xu, Q.-j., & Xing, Y.-h. (2019). Environmental impact analysis of power generation from biomass and wind farms in different locations. Renewable and Sustainable Energy Reviews, 102,
Ghandehariun, S., & Kumar, A. (2016). Life cycle assessment of wind-based hydrogen production in Western Canada. International Journal of Hydrogen Energy, 41(22), 9696-9704.
Govender, I., Thopil, G. A., & Inglesi-Lotz, R. (2019). Financial and economic appraisal of a biogas to electricity project. Journal of Cleaner Production, 214, 154-165.
Hondo, H. (2005). Life cycle GHG emission analysis of powe(Odeh & Cockerill, 2008)r generation systems: Japanese case. Energy, 30(11-12), 2042-2056.
IEA. (2017). Energy Technology Perspectives 2017, from https://webstore.iea.org/download/direct/1058?fileName=Energy_Technology_Perspectives_2017.pdf
IEA. (2019). World Energy Outlook 2019, from https://www.iea.org/weo2019/
IEA. (2018). CO₂ EMISSIONS FROM FUEL COMBUSTION OVERVIEW, from https://webstore.iea.org/download/direct/1082?fileName=CO2_Emissions_from_Fuel_Combustion_2018_Overview.pdf
IEA. (2018). Key world energy statistics, from https://webstore.iea.org/download/direct/2291?fileName=Key_World_2018.pdf
IEA. (2018). Renewables 2018, from https://www.iea.org/renewables2018/15. https://www.iea.org/topics/renewables/
IPCC. (2013). AR5 Climate Change 2014: Mitigation of Climate Change, 2013, from https://www.ipcc.ch/report/ar5/wg3/
Lee, D.-Y., Elgowainy, A., Kotz, A., Vijayagopal, R., & Marcinkoski, J. (2018). Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium-and heavy-duty trucks. Journal of Power Sources, 393, 217-229.
Liang, X., Wang, Z., Zhou, Z., Huang, Z., Zhou, J., & Cen, K. (2013). Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production, 39, 24-31.
Li, L., Lei, Y., Wu, S., Huang, Z., Luo, J., Wang, Y., . . . Yan, D. (2018). Evaluation of future energy consumption on PM2.5 emissions and public health economic loss in Beijing. Journal of Cleaner Production, 187, 1115-1128.
Li, J., Li, S., & Wu, F. (2020). Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renewable Energy, 155, 456-468.
Odeh, N. A., & Cockerill, T. T. (2008a). Life cycle analysis of UK coal fired power plants. Energy Conversion and Management, 49(2), 212-220
Odeh, N. A., & Cockerill, T. T. (2008b). Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy, 36(1), 367-380.
Orfanos, N., Mitzelos, D., Sagani, A., & Dedoussis, V. (2019). Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece. Renewable Energy, 139, 1447-1462.
Patterson, T., Esteves, S., Carr, S., Zhang, F., Reed, J., Maddy, J., & Guwy, A. (2014). Life cycle assessment of the electrolytic production and utilization of low carbon hydrogen vehicle fuel. International Journal of Hydrogen Energy, 39(14), 7190-7201.
Posso, F., & Zambrano, J. (2014). Estimation of electrolytic hydrogen production potential in Venezuela from renewable energies. International Journal of Hydrogen Energy, 39(23), 11846-11853.
Quek, A., Ee, A., Ng, A., & Wah, T. Y. (2018). Challenges in Environmental Sustainability of renewable energy options in Singapore. Energy Policy, 122, 388-394.
Raugei, M., Hutchinson, A., & Morrey, D. (2018). Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point. Journal of Cleaner Production, 201, 1043-1051.
Schleisner(2000). Life cycle assessment of wind farm and related externalities. Renewable energy.
Shen, W., Han, W., Wallington, T. J., & Winkler, S. (2019). China Electricity Generation Greenhouse Gas Emission Intensity in 2030: Implications for Electric Vehicles. Environmental science & technology.
Stoppato, A. (2008). Life cycle assessment of photovoltaic electricity generation. Energy, 33(2), 224-232.
Tang, L., Nagashima, T., Hasegawa, K., Ohara, T., Sudo, K., & Itsubo, N. (2015). Development of human health damage factors for PM2.5 based on a global chemical transport model. The International Journal of Life Cycle Assessment, 23(12), 2300-2310.
Verán-Leigh, D., & Vázquez-Rowe, I. (2019). Life cycle assessment of run-of-river hydropower plants in the Peruvian Andes: a policy support perspective. The International Journal of Life Cycle Assessment, 24(8), 1376-1395.
Wakiyama, T., & Kuriyama, A. (2018). Assessment of renewable energy expansion potential and its implications on reforming Japan's electricity system. Energy Policy, 115, 302-316.
WHO.(2005).Air quality guidelines., from https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/
WHO. (2018). WHO ambient (outdoor) air quality database Summary results, update 2018., from http://www.who.int/airpollution/data/cities/en
WMO. (2018). WMO Statement on the State of the Global Climate in 2018, from https://library.wmo.int/doc_num.php?explnum_id=5789
Wu, P., Ma, X., Ji, J., & Ma, Y. (2017). Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study. Energy Procedia, 105, 68-74.