簡易檢索 / 詳目顯示

研究生: 蘇紀軒
Su, Chi-Hsien
論文名稱: 新穎觀點分析脂肪族聚酯高分子之內部晶板排列情形
Novel Approaches to Analyze Interior Lamellae in Banded Spherulites of Aliphatic Polyester
指導教授: 吳逸謨
Woo, Eamor M
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 69
中文關鍵詞: 雙環帶狀球晶晶板自組裝聚己二酸二乙酯聚己二酸二丁酯
外文關鍵詞: double ring-banded spherulite, lamellae assembly, poly(ethylene adipate), poly(1,4-butylene adipate)
相關次數: 點閱:112下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要利用掃描式電子顯微鏡(scanning electron microscopy, SEM)及斷裂厚膜試片的方式,針對聚己二酸二乙酯[poly(ethylene adipate), PEA]及聚己二酸二丁酯[poly(1,4-butylene adipate), PBA]兩脂肪族聚酯類高分子所形成的雙環帶狀球晶進行內部結構分析。
    PEA於28 oC下形成的環帶狀球晶內部呈現多層堆疊的洋蔥狀結構,層中主要由徑向的片板狀晶板和纖毛狀晶板構成,層間以極薄的切線方向排列的纖毛狀晶板連接,其中存在部分90度彎折並向外轉向徑向方向。切線方向的纖毛狀晶板延伸至上表面會向球晶外圍的方向分枝及彎曲,和傾斜的徑向晶板匯集並向上穿透出上表面,於上表面形成峰部。較為突出且寬度較寬的峰部對應至下方是較為傾斜的徑向晶板;反之,越窄的峰部對應至下方是越平緩的徑向晶板。PBA於30 oC下形成的環帶狀球晶,內部同樣為多層堆疊的洋蔥狀結構,主要由徑向晶板和相對PEA較寬的切線方向晶板帶堆疊,其中切線晶板帶中存在彎曲、扭曲甚至是扭轉的晶板。另外,徑向晶板帶的中央有90o彎折的情形,形成一股極薄的切線晶板帶,使得PBA層狀結構以徑向-切線-徑向-切線的方式排列。PBA於33度下結晶,所形成的連續性纖維放射狀球晶中,並沒有發現以切線方向排列的晶板帶,故以切線方向排列的晶板的存在決定了PBA是否形成多層結構,並且證明了PBA環帶狀球晶中存在以切線方向排列的晶板。
    過去普遍認為和PEA化學結構相似的PBA,其所形成的環帶狀球晶是由扭轉晶板所構成的。透過以三維角度的觀察研究後發現,PBA和PEA環帶狀球晶的三維內部構造同為多層堆疊的洋蔥狀結構,且層中構造雖存在結構上的差異,但同樣具有徑向和切線方向交替排列的情形,層與層之間主要仍呈現不連續的情形,彼此間並不具有連續轉變的過渡帶。而環帶狀球晶中雖然存在部分晶板彎曲、分枝甚至是扭轉等情形證實了晶板會扭曲,但都沒有證據顯示以球晶中心向外、連續性螺旋狀的扭轉晶板存在於球晶中,證明了脂肪族聚酯類所形成的環帶狀球晶並非以螺旋扭轉的晶板構成。

    By 3-D SEM observation on the dissected bulk sample of poly(ethylene adipate)(PEA) and poly(butylene adipate)(PBA), which have ability to form double ring-banded morphology, more complete images on polymer self-assembly are obtained. PEA top surface exhibits different width of the ridge caused by the different angle between top bowl-like profile and radially orientation lamellar packing. Interior of the bulk banded PEA sample show discontinuous layer structure seems like onion. Each layer is constituted by radial direction plate-like lamellar attaching cilia-like lamellar and tangential cilia-like lamellar. Tangential cilia-like lamellar will bend in radial direction and combine with plate-like lamellar. The detailed lamellar structures gained from the observation to the bulk sample bring forth the correlation between the interior and top-surface lamellar structures. With better techniques and preparation samples, the wider variation of point of view provided by the 3-D observation offers clearer images than what provided by the 2-D observation. SEM micrographs of PBA banded spherulite also exhibits layered-structure. Each layer composed of tangentially- and radially oriented lamellae though the regularity is lower than PEA banded spherulite. Banding and twisting lamellae are found in the radially oriented layer. This phenomenon caused PBA banded structure more irregular. Both PEA and PBA banded spherulites show multi-layered structure and shape into onion like. The interior micrographs show discontinuous multi-layered structure and prove that banded spherulite is not composed of continuously twisting lamellae from the nucleus to the outer periphery.

    目錄: 中文摘要 I ABSTRACT II 致謝 VII 目錄 X 圖目錄 XI 第1章 文獻回顧及相關原理 1 1-1 簡介 1 1-2 高分子球晶及偏光顯微鏡 4 1-3 環帶狀球晶及相關研究 8 1-4 PEA與PBA之研究 19 1-5 研究動機及方向 24 第2章 實驗 25 第3章 PEA雙環帶球晶 28 3-1 PEA雙環帶狀球晶上表面 29 3-2 PEA雙環帶狀球晶斷截面及上表面關聯性 35 3-3 PEA環帶狀球晶內部結構 39 第4章 PBA雙環帶球晶 44 4-1 PBA及其混摻系統球晶形貌 45 4-2 PBA球晶上表面及內部結構 52 4-3 PEA和PBA環帶狀球晶內部比較 59 第5章 結論 60 參考文獻 65 圖目錄: Figure. 3.1 POM micrographs of PEA crystallized at 28 oC after melting at 90 oC (a,b) and 70 oC (c,d), observed with and without tint plate, respectively. 31 Figure. 3.2 SEM micrographs of PEA spherulites in films of thickness: (a) 45~55µm, and (b) 3~10µm thickness samples, showing spiral core-center. 32 Figure. 3.3 SEM micrographs of outer banding pattern of PEA banded spherulite with different sample thickness: (a) 45-55µm and (b) 3-10µm. 33 Figure. 3.4 SEM micrograph (a) and plot (b) showing the correlations between ridge, valley, and band width with regard to band number numerated from the nucleus. 34 Figure. 3.5 SEM graph (a) and scheme (b) of bulk PEA banded spherulite showing top profile: concave at the center and thickness decrement at outer periphery. 37 Figure. 3.6 SEM micrographs of the zoomed-in fractured- vs top-surfaces of PEA spherulites generated from bulk samples with different inclination angles between radial direction and top-surface interface. 38 Figure. 3.7 SEM micrographs of fractured-surface of PEA banded spherulite crystallized at 28 oC under (a) 1000X and (b) 8000X magnifications. 41 Figure. 3.8 SEM micrographs of the zoomed-in fractured- vs top-surfaces of PEA banded spherulite crystallized at 28 oC under 8000X magnifications. 42 Figure. 3.9 SEM micrographs of fractured-surface of 28 oC crystallized PEA bulk sample under (a) 2000X and (b) 4000X magnifications. 43 Figure. 4.1 POM graphs of neat PBA covered samples prepared by chloroform solution casting melt-crystallized at: (a) 25 oC, (b) 27 oC, (c) 30 oC, (d) 33 oC, (e) 35 oC by quenching from Tmax = 90 oC. 48 Figure. 4.2 POM graphs of neat PBA prepared by tetrahydrofuran solution casting melt-crystallized at: (a) 25 oC, (b) 27 oC, (c) 29 oC, (d) 30 oC, (e) 31 oC, (f) 33 oC, (g) 35 oC by quenching from Tmax = 90 oC. 49 Figure. 4.3 POM graphs of PBA/PVDF (95/5) melt-crystallized at: (a) 24 oC, (b) 28 oC, (c) 29 oC, (d) 30 oC, (e) 31 oC, (f) 33 oC, (g) 40 oC by quenching from Tmax = 200 oC. 50 Figure. 4.4 POM graphs of PBA/phenoxy (95/5) treated by different thermal treatments as listed on the graphs. 51 Figure. 4.5 SEM micrographs of neat PBA top surface melt-crystallized at: (a) 25 oC, (b) 30 oC, (c) 35 oC, prepared by repeated solvent casting. 55 Figure. 4.6 SEM micrographs of neat PBA fractured surface melt-crystallized at 30 oC, prepared by direct molding. 56 Figure. 4.7 SEM micrographs of fractured-surface of direct molding PBA sample melt-crystallized at 33 oC showing spheruitic mophology with different nucleus location: (a) at top, (b) at middle and (c) at buttom of the sample. 57 Figure. 4.8 SEM micrographs of fractured-surface of sovent casting prepared neat PBA melt-crystallized at 33 oC under (a) 2000X ,(b) 8000X magnifications. 58 Figure. 5.1 Scheme of PEA banded spherulite with multi-layered structure. 63

    [1]. Sperling LH. Introduction to physical polymer science. John Wiley & Sons, 2005.
    [2]. Shtukenberg AG, Cui X, Freudenthal J, Gunn E, Camp E, Kahr B. Twisted mannitol crystals establish homologous growth mechanisms for high-polymer and small-molecule ring-banded spherulites. Journal of the American Chemical Society, 2012. 134(14): p. 6354-6364.
    [3]. Shtukenberg AG, Punin YO, Gunn E, Kahr B. Spherulites. Chemical reviews, 2011. 112(3): p. 1805-1838.
    [4]. He K, Daniels H, Brown A, Brydson R, Edmonds D. An electron microscopic study of spheroidal graphite nodules formed in a medium-carbon steel by annealing. Acta materialia, 2007. 55(9): p. 2919-2927.
    [5]. Maslov V, Nosenko V, Jurisch M. Microstructure formation processes in melt spun and bulk undercooled Fe-and Ni-base alloys. Journal of materials science, 2002. 37(21): p. 4663-4668.
    [6]. Hong P-D, Chung W-T, Hsu C-F. Crystallization kinetics and morphology of poly(trimethylene terephthalate). Polymer, 2002. 43(11): p. 3335-3343.
    [7]. Khoury F. The spherulitic crystallization of isotactic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors. J Res Natl Bur Stand A, 1966. 70(1): p. 29-61.
    [8]. Han J, Song G, Guo R. Nanostructure-Based Leaf-like Polyaniline in the Presence of an Amphiphilic Triblock Copolymer. Advanced Materials, 2007. 19(19): p. 2993-2999.
    [9]. Briber RM, Khoury F. The morphology of poly(vinylidene fluoride) crystallized from blends of poly(vinylidene fluoride) and poly(ethyl acrylate). Journal of Polymer Science Part B: Polymer Physics, 1993. 31(10): p. 1253-1272.
    [10]. Lugito G, Woo EM. Lamellar assembly corresponding to transitions of positively to negatively birefringent spherulites in poly(ethylene adipate) with phenoxy. Colloid and Polymer Science, 2013. 291(4): p. 817-826.
    [11]. Ludwig HJ, Eyerer P. Influence of the processing conditions on morphology and deformation behavior of poly(butylene terephthalate)(PBT). Polymer Engineering & Science, 1988. 28(3): p. 143-146.
    [12]. http://www.microscopyu.com/articles/polarized/polarizedintro.html.
    [13]. http://www.microscopyu.com/articles/polarized/birefringenceintro.html.
    [14]. Lugito G, Yang C-Y, Woo EM. Phase-separation induced lamellar re-assembly and spherulite optical birefringence reversion. Macromolecules, 2014. 47(16): p. 5624-5632.
    [15]. Nurkhamidah S, Woo EM. Unconventional Non-birefringent or Birefringent Concentric Ring-Banded Spherulites in Poly(L-lactic acid) Thin Films. Macromolecular Chemistry and Physics, 2013. 214(6): p. 673-680.
    [16]. Woo EM, Nurkhamidah S, Chen Y-F. Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate). Physical Chemistry Chemical Physics, 2011. 13(39): p. 17841-17851.
    [17]. Lugito G, Woo EM. Three types of banded structures in highly birefringent poly(trimethylene terephthalate) spherulites. Journal of Polymer Science Part B: Polymer Physics, 2016.
    [18]. Hutter JL, Bechhoefer J. Banded spherulitic growth in a liquid crystal. Journal of crystal growth, 2000. 217(3): p. 332-343.
    [19]. Keller A. Investigations on banded spherulites. Journal of Polymer Science, 1959. 39(135): p. 151-173.
    [20]. Keller A, Sawada S. On the interior morphology of bulk polyethylene. Die Makromolekulare Chemie, 1964. 74(1): p. 190-221.
    [21]. Keith H, Padden F. Banding in polyethylene and other spherulites. Macromolecules, 1996. 29(24): p. 7776-7786.
    [22]. Keith H, Padden F. Twisting orientation and the role of transient states in polymer crystallization. Polymer, 1984. 25(1): p. 28-42.
    [23]. Bassett D, Hodge A. On lamellar organization in banded spherulites of polyethylene. Polymer, 1978. 19(4): p. 469-472.
    [24]. Bassett D, Hodge A, editors. On the morphology of melt-crystallized polyethylene I. Lamellar profiles. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1981. The Royal Society.
    [25]. Bassett D, Hodge A, Olley R, editors. On the morphology of melt-crystallized polyethylene II. Lamellae and their crystallization conditions. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1981. The Royal Society.

    [26]. Bassett D, Hodge A, editors. On the morphology of melt-crystallized polyethylene. III. Spherulitic organization. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1981. The Royal Society.
    [27]. Lotz B, Cheng SZ. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer, 2005. 46(3): p. 577-610.
    [28]. Schultz J, Kinloch D. Transverse screw dislocations: A source of twist in crystalline polymer ribbons. Polymer, 1969. 10: p. 271-278.
    [29]. Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H. Branching and higher order structure in banded polyethylene spherulites. Macromolecules, 2008. 41(7): p. 2484-2493.
    [30]. Toda A, Taguchi K, Kajioka H. Instability-driven branching of lamellar crystals in polyethylene spherulites. Macromolecules, 2008. 41(20): p. 7505-7512.
    [31]. Schultz JM. Self-induced field model for crystal twisting in spherulites. Polymer, 2003. 44(2): p. 433-441.
    [32]. Ye, H.-M., J.-S. Wang, S. Tang, J. Xu, X.-Q. Feng, B.-H. Guo, X.-M. Xie, J.-J. Zhou, L. Li and Q. Wu. Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules, 2010. 43(13): p. 5762-5770.
    [33]. Punin YO, Shtukenberg A. Autodeformation defects in crystals. St Petersburg University Press: St Petersburg, Russia. 2008.
    [34]. Chao C-C, Chen C-K, Chiang Y-W, Ho R-M. Banded Spherulites in PS− PLLA Chiral Block Copolymers. Macromolecules, 2008. 41(11): p. 3949-3956.
    [35]. Wang, B., C. Y. Li, J. Hanzlicek, S. Z. Cheng, P. H. Geil, J. Grebowicz and R.-M. Ho. Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales. Polymer, 2001. 42(16): p. 7171-7180.
    [36]. Shtukenberg AG, Freudenthal J, Kahr B. Reversible twisting during helical hippuric acid crystal growth. Journal of the American Chemical Society, 2010. 132(27): p. 9341-9349.
    [37]. MacMasters MM, Abbott JE, Peters CA. Investigations of the Effects of Some Factors on Rhythmic Crystallization1. Journal of the American Chemical Society, 1935. 57(12): p. 2504-2508.

    [38]. Woo EM, Mandal TK, Lee S-C. Relationships between ringed spherulitic morphology and miscibility in blends of poly(ɛ-caprolactone) with poly(benzyl methacrylate) versus poly(phenyl methacrylate). Colloid and Polymer Science, 2000. 278(11): p. 1032-1042.
    [39]. Wang Z, Alfonso GC, Hu Z, Zhang J, He T. Rhythmic growth-induced ring-banded spherulites with radial periodic variation of thicknesses grown from poly(ε-caprolactone) solution with constant concentration. Macromolecules, 2008. 41(20): p. 7584-7595.
    [40]. Kawashima K, Kawano R, Miyagi T, Umemoto S, Okui N. Morphological changes in flat-on and edge-on lamellae of poly(ethylene succinate) crystallized from molten thin films. Journal of Macromolecular Science, Part B, 2003. 42(3-4): p.889-899.
    [41]. Xu, J., B.-H. Guo, Z.-M. Zhang, J.-J. Zhou, Y. Jiang, S. Yan, L. Li, Q. Wu, G.-Q. Chen and J. M. Schultz. Direct AFM observation of crystal twisting and organization in banded spherulites of chiral poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 2004. 37(11): p. 4118-4123.
    [42]. Xu J, Guo BH, Chen GQ, Zhang ZM. Terraces on banded spherulites of polyhydroxyalkanoates. Journal of Polymer Science Part B: Polymer Physics, 2003. 41(18): p. 2128-2134.
    [43]. Chen YF, Woo EM. Annular Multi‐Shelled Spherulites in Interiors of Bulk‐Form Poly(nonamethylene terephthalate). Macromolecular rapid communications, 2009. 30(22): p. 1911-1916.
    [44]. Woo E, Wang L-Y, Nurkhamidah S. Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form. Macromolecules, 2012. 45(3): p. 1375-1383.
    [45]. Meyer A, Yen KC, Li S-H, Förster S, Woo EM. Atomic-force and optical microscopy investigations on thin-film morphology of spherulites in melt-crystallized poly(ethylene adipate). Industrial & Engineering Chemistry Research, 2010. 49(23): p. 12084-12092.
    [46]. Lugito G, Woo EM. Intertwining lamellar assembly in porous spherulites composed of two ring-banded poly(ethylene adipate) and poly(butylene adipate). Soft matter, 2015. 11(5): p. 908-917.
    [47]. Lugito G, Woo EM. Interior Lamellar Assembly in Correlation to Top-Surface Banding in Crystallized Poly(ethylene adipate). Crystal Growth & Design, 2014. 14(10): p. 4929-4936.
    [48]. Lin J-H, Woo EM. Correlation between interactions, miscibility, and spherulite growth in crystalline/crystalline blends of poly(ethylene oxide) and polyesters. Polymer, 2006. 47(19): p. 6826-6835.
    [49]. Chang CS, Woo EM, Lin JH. Miscibility with Asymmetrical Interactions in Blends of Two Carbonyl-Containing Polymers: Poly(vinyl acetate) with Aliphatic Polyesters. Macromolecular Chemistry and Physics, 2006. 207(15): p. 1404-1413.
    [50]. Penning J, St. John Manley R. Miscible blends of two crystalline polymers. 1. Phase behavior and miscibility in blends of poly(vinylidene fluoride) and poly(1, 4-butylene adipate). Macromolecules, 1996. 29(1): p. 77-83.
    [51]. Penning J, St. John Manley R. Miscible blends of two crystalline polymers. 2. Crystallization kinetics and morphology in blends of poly(vinylidene fluoride) and poly(1, 4-butylene adipate). Macromolecules, 1996. 29(1): p. 84-90.
    [52]. Wang L-Y, Lugito G, Woo EM, Wang Y-H. Phase behavior, polymorphism and spherulite morphology in Poly(1,4-butylene adipate) interacting with two structurally similar acrylic polymers. Polymer, 2012. 53(17): p. 3815-3826.
    [53]. Minke R, Blackwell J. Polymorphic structures of poly(tetramethylene adipate). Journal of Macromolecular Science, Part B: Physics, 1979. 16(3): p. 407-417.
    [54]. Minke R, Blackwell J. Single crystals of poly(tetramethylene adipate). Journal of Macromolecular Science, Part B: Physics, 1980. 18(2): p. 233-255.
    [55]. Gan Z, Abe H. Temperature‐Induced Polymorphic Crystals of Poly(butylene adipate). Macromolecular Chemistry and Physics, 2002. 203(16): p. 2369-2374.
    [56]. Gan Z, Kuwabara K, Abe H, Iwata T, Doi Y. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly(butylene adipate) films. Polymer Degradation and Stability, 2005. 87(1): p. 191-199.
    [57]. Liu J, Ye H-M, Xu J, Guo B-H. Formation of ring-banded spherulites of α and β modifications in Poly(butylene adipate). Polymer, 2011. 52(20): p. 4619-4630.
    [58]. Frömsdorf A, Woo EM, Lee LT, Chen YF, Förster S. Atomic Force Microscopy Characterization and Interpretation of Thin-Film Poly(butylene adipate) Spherulites with Ring Bands. Macromolecular Rapid Communications, 2008. 29(15): p. 1322-1328.
    [59]. Zhao L, Wang X, Li L, Gan Z. Structural analysis of poly(butylene adipate) banded spherulites from their biodegradation behavior. Polymer, 2007. 48(20): p. 6152-6161.

    下載圖示 校內:2021-08-31公開
    校外:2021-08-31公開
    QR CODE