簡易檢索 / 詳目顯示

研究生: 黃前程
Huang, Chien-Cheng
論文名稱: 以溫度波分析法探討濺鍍二氧化矽奈米薄膜之熱傳導係數
Exploring Thermal Conductivity for Sputtering Silicon Dioxide Nanofilms by Temperature Wave Analysis Method
指導教授: 温昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 溫度波分析法濺鍍薄膜熱傳導係數實驗量測
外文關鍵詞: Temperature Wave Analysis Method, Nanofilms, Sputtering, Thermal conductivity
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜製程的應用十分廣泛,常見於半導體、光電、微機電等領域,其熱性質也相當重要,薄膜熱傳導係數便是探討的重點。許多產品元件在進行熱傳設計的時候,常以塊材的熱傳導係數代入計算,薄膜與塊材的熱傳導係數有一定程度的差異,因而造成熱傳分析上的誤差。
    本研究為利用溫度波分析法對於濺鍍之二氧化矽薄膜進行實驗,量測其熱傳導係數,找到不同厚度適合的溫度振盪頻率,並針對各項可能對薄膜熱傳導係數造成影響的因素進行研究,探討的內容包括溫度、基板、晶格排列、厚度、鍍製方法。以實驗的方式觀察這些因素是否會影響薄膜的熱傳導係數。
    本研究發現將薄膜鍍製在不同的基板上,並不會影響到薄膜熱傳導係數;因為尺寸效應,薄膜的厚度不同,實驗量測得到的熱傳導係數也會不一樣;晶格排列在常溫情況下,晶相與非晶相薄膜之熱傳導係數沒有明顯的差距,但在變溫情況下,兩者差距有隨著溫度升高而擴大的趨勢;不同的鍍製方法,會影響到薄膜的孔隙率,進而導致量測得到的薄膜熱傳導係數不同。

    The application of thin film procedures are widely used in Semiconductors, Optoelectronics, Microelectromechanical Systems, and other fields. Its thermal properties are also very important. The thermal conductivity of the thin film is the focus of discussion. When considering the heat transfer of the product, the thermal conductivity of the bulk material is often substituted into the calculation. There is a difference between the thermal conductivity of the thin film and the bulk material, which causes errors in the heat transfer analysis.
    This research is based on the Temperature Wave Analysis method to do experiments on the sputtered silicon dioxide film, measure the thermal conductivity to find the suitable temperature oscillation frequency for different thicknesses, and research various factors that affect the thermal conductivity of the film. The contents discuss include temperature, substrate, lattice arrangement, thickness, and various thin film methods. This research observes experimentally whether these factors will affect the thermal conductivity of the thin film.
    This study find that coating the thin film on different substrates does not affect the thermal conductivity of the thin film. Because of the size effect, the thickness of the film is different, and the thermal conductivity measured by the experiment will also be different. When the crystal lattice is arranged at room temperature, there is no obvious difference between the thermal conductivity of the crystalline phase and the amorphous phase film, but in the case of changing temperature, the gap between the two phases have a tendency to expand as the temperature rises. Different thin film methods will affect the porosity of the film. In turn, the measured thermal conductivity of the film is different.

    摘要 i 誌謝 xi 目錄 xii 表目錄 xv 圖目錄 xvii 符號表 xxi 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 熱擴散法介紹 2 1-2-2 熱傳導法介紹 10 1-3 研究動機 16 1-4 本文架構 19 第二章 理論分析 20 2-1 微觀熱傳探討 20 2-1-1 溫度與薄膜熱傳導係數的關係 21 2-1-2 微奈米薄膜之尺寸效應 24 2-2 溫度波分析法理論公式(熱傳導係數公式) 28 2-3 物理氣相沉積 31 2-3-1 濺鍍法(Sputtering) 32 2-3-2 蒸鍍法(Evaporation) 38 2-4 化學氣相沉積 42 2-4-1電漿輔助化學氣相沉積(PECVD) 44 2-5 擴散(Diffusion) 46 2-5-1氧化(Oxidation) 48 2-5-2退火(Annealing) 49 第三章 實驗方法 50 3-1 薄膜鍍製 50 3-1-1 基板介紹 50 3-1-2 基板清洗 53 3-1-3 濺鍍沉積薄膜 54 3-1-4 退火 57 3-2 實驗架設 61 3-3 實驗設備介紹 64 3-4 實驗量測步驟 77 第四章 結果與討論 80 4-1 常溫下濺鍍二氧化矽薄膜之熱傳導係數 80 4-1-1 不同厚度之溫度振盪頻率 81 4-1-2 不同基板比較 82 4-1-3 不同晶格排列比較 84 4-1-4 不同厚度比較 85 4-1-5 薄膜與塊材比較 86 4-1-6 不同鍍製方法比較 88 4-2 變溫下濺鍍二氧化矽薄膜之熱傳導係數 92 4-2-1 不同基板比較 93 4-2-2 不同晶格排列比較 95 4-2-3 不同厚度比較 97 4-2-4 不同鍍製方法比較 99 第五章 結論與未來工作 103 5-1 結論 103 5-2 未來工作 105 第六章 參考文獻 106

    [1] 楊子明, "半導體製程設備技術," 五南出版社, 2020.
    [2] O. Pessoa Jr, C. Cesar, N. Patel, H. Vargas, C. Ghizoni, and L. Miranda, "Two‐beam photoacoustic phase measurement of the thermal diffusivity of solids," Journal of applied physics, vol. 59, no. 4, pp. 1316-1318, 1986.
    [3] T. Yao, "Thermal properties of AlAs/GaAs superlattices," Applied Physics Letters, vol. 51, no. 22, pp. 1798-1800, 1987.
    [4] G. Chen, C. Tien, X. Wu, and J. Smith, "Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures," 1994.
    [5] S. Govorkov, W. Ruderman, M. Horn, R. Goodman, and M. Rothschild, "A new method for measuring thermal conductivity of thin films," Review of scientific instruments, vol. 68, no. 10, pp. 3828-3834, 1997.
    [6] X. Wang, H. Hu, and X. Xu, "Photo-acoustic measurement of thermal conductivity of thin films and bulk materials," J. heat Transfer, vol. 123, no. 1, pp. 138-144, 2001.
    [7] G. Langer, J. Hartmann, and M. Reichling, "Thermal conductivity of thin metallic films measured by photothermal profile analysis," RScI, vol. 68, no. 3, pp. 1510-1513, 1997.
    [8] A. Salazar, A. Sánchez-Lavega, and J. Fernández, "Thermal diffusivity measurements in solids by the``mirage''technique: Experimental results," JAP, vol. 69, no. 3, pp. 1216-1223, 1991.
    [9] T. Hashimoto and J. Morikawa, "Temperature wave analysis," Scientific Instrument News, vol. 9, 2017.
    [10] E. Jansen and E. Obermeier, "Thermal conductivity measurements on thin films based on micromechanical devices," Journal of Micromechanics and Microengineering, vol. 6, no. 1, p. 118, 1996.
    [11] B. Zink, B. Revaz, J. Cherry, and F. Hellman, "Measurement of thermal conductivity of thin films with a Si-N membrane-based microcalorimeter," Review of Scientific Instruments, vol. 76, no. 2, p. 024901, 2005.
    [12] D. G. Cahill, "Thermal conductivity measurement from 30 to 750 K: the 3ω method," Review of scientific instruments, vol. 61, no. 2, pp. 802-808, 1990.
    [13] S.-M. Lee and D. G. Cahill, "Heat transport in thin dielectric films," Journal of applied physics, vol. 81, no. 6, pp. 2590-2595, 1997.
    [14] T. Yamane, N. Nagai, S.-i. Katayama, and M. Todoki, "Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method," Journal of applied physics, vol. 91, no. 12, pp. 9772-9776, 2002.
    [15] J. C. Lambropoulos et al., "Thermal conductivity of dielectric thin films," Journal of applied physics, vol. 66, no. 9, pp. 4230-4242, 1989.
    [16] O. Käding, H. Skurk, and K. Goodson, "Thermal conduction in metallized silicon‐dioxide layers on silicon," Applied Physics Letters, vol. 65, no. 13, pp. 1629-1631, 1994.
    [17] 饒達仁, 賴威志, 簡恆傑, and 徐振庭, "二氧化矽薄膜之熱傳導係數與邊界熱阻之量測研究," in 科儀新知, 行政院國家科學委員會精密儀器發展中心, 2008, no. 162: 行政院國家科學委員會精密儀器發展中心.
    [18] L. Kazmerski, Polycrystalline and amorphous thin films and devices. Elsevier, 2012.
    [19] D. G. Cahill, "Heat transport in dielectric thin films and at solid-solid interfaces," Microscale Thermophysical Engineering, vol. 1, no. 2, pp. 85-109, 1997.
    [20] S. E. Gustafsson, "Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials," Review of scientific instruments, vol. 62, no. 3, pp. 797-804, 1991.
    [21] R. C. Campbell, S. E. Smith, and R. L. Dietz, "Measurements of adhesive bondline effective thermal conductivity and thermal resistance using the laser flash method," in Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 99CH36306), 1999: IEEE, pp. 83-97.
    [22] M.-J. Huang, T.-Y. Chang, H.-C. Chien, W.-C. Sun, and D.-J. Yao, "The Thickness Difference Method for Measuring the Thermal Conductivity of Thick Films," Journal of microelectromechanical systems, vol. 19, no. 4, pp. 895-902, 2010.
    [23] H. T. Taha and A. K. Alassafee, "Size dependence lattice thermal conductivity for Si nanofilm," in AIP Conference Proceedings, 2016, vol. 1718, no. 1: AIP Publishing LLC, p. 090005.
    [24] J. M. Ziman, Electrons and phonons: the theory of transport phenomena in solids. Oxford university press, 2001.
    [25] A. Barut, "E= ℏω," Physics Letters A, vol. 143, no. 8, pp. 349-352, 1990.
    [26] W. D. Callister and D. G. Rethwisch, Materials science and engineering. John wiley & sons NY, 2011.
    [27] 簡恒傑, "微奈米尺度薄膜之熱傳導量測方法研究開發," 清華大學工程與系統科學系學位論文, pp. 1-140, 2010.
    [28] 蕭子綱, 張旭凱, 李嗣涔, and 張之威, "矽鍺奈米線之熱導率相圖," 國家奈米元件實驗室奈米通訊, vol. 19, no. 2, pp. 38-42, 2012.
    [29] B. Latour and Y. Chalopin, "Distinguishing between spatial coherence and temporal coherence of phonons," Physical Review B, vol. 95, no. 21, p. 214310, 2017.
    [30] 吳晨維, "以非平衡態分子動力學探討完美及具缺陷碳化矽奈米薄膜之熱傳導係數及聲子傳輸行為之影響," 成功大學機械工程學系學位論文, pp. 1-135, 2020.
    [31] W. M. Rohsenow, J. P. Hartnett, and Y. I. Cho, Handbook of heat transfer. McGraw-Hill New York, 1998.
    [32] 王奕迪, "薄膜熱膨脹與熱擴散係數量測分析研究," 成功大學機械工程學系學位論文, pp. 1-131, 2013.
    [33] 黃俊凱, "以溫度波分析法量測奈米尺度之二氧化矽薄膜於溫度影響下之熱傳導係數," 成功大學機械工程學系學位論文, pp. 1-115, 2021.
    [34] H. Xiao, "Introduction to Semiconductor Manufacturing Technology 2/E," Chuan Hwa Book, 2012.
    [35] 楊雲凱, "物理氣相沉積(PVD)介紹," 國家奈米元件實驗室 , 奈米通訊 22卷4期 , P33 - 35, 2015.
    [36] 張勁燕, "半導體製程設備," 五南出版社, 2005.
    [37] "http://www.s-t-d.com.tw/."
    [38] 梁忠霖, "熱電晶片致冷效應之研究," 宜蘭大學機械與機電工程學系學位論文, pp. 1-75, 2017.
    [39] 張祐銓, "溫度波分析法應用於二氧化矽薄膜熱傳導係數量測之實驗與數值研究," 成功大學機械工程學系學位論文, pp. 1-93, 2020.
    [40] S.-M. Lee, D. G. Cahill, and T. H. Allen, "Thermal conductivity of sputtered oxide films," Physical Review B, vol. 52, no. 1, p. 253, 1995.
    [41] D. G. Cahill and T. H. Allen, "Thermal conductivity of sputtered and evaporated SiO2 and TiO2 optical coatings," Applied Physics Letters, vol. 65, no. 3, pp. 309-311, 1994.
    [42] G. Hu, G. Orkoulas, and P. D. Christofides, "Modeling and control of film porosity in thin film deposition," Chemical Engineering Science, vol. 64, no. 16, pp. 3668-3682, 2009.

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE