| 研究生: |
張雲翔 Chang, Yun-Hsiang |
|---|---|
| 論文名稱: |
微管道內鋸齒無動件閥之非定常特性研究 A Study of the Unsteady Characteristics of a Saw-toothed No-Moving-Part Valve in Micro-channel |
| 指導教授: |
潘大知
Pan, Dartzi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 鋸齒閥 、無動件閥 |
| 外文關鍵詞: | Saw-toothed, NMPV |
| 相關次數: | 點閱:116 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討微管道內鋸齒狀無動件閥的非定常態特性。無動件閥在設計上避免使用活動元件,只是利用閥門流道的幾何形狀,使得流體在不同流動方向受到不同的流動阻力,因此在相同的壓差作用之下,阻力較小的方向可產生較大的管道流量。當在幫浦振動腔的進出口管道裝置適當方向的無動件閥門時,由薄膜振動所產生的管道流場會在特定方向累積淨流量。無動件閥門在非定常流場內的特性即成為幫浦流量的主要決定因素。
本研究以計算流體力學為工具,以擴散閥及噴嘴閥的特性為參考閥門,比較鋸齒閥與參考閥門非定常特性之不同。研究結果顯示在二維計算中,當振動頻率小於32Hz時,鋸齒閥幫浦的幫浦流量最大、噴嘴閥幫浦流量次之、擴散閥幫浦流量最小;但在振動頻率大於 32Hz時,鋸齒閥的幫浦流量反而較參考閥的幫浦流量更小。在三維運算時,本研究比較三種閥門在32Hz及100Hz的幫浦流量,結果顯示鋸齒閥幫浦的流量最高。
This thesis investigates the unsteady characteristics of a saw-toothed no-moving-part valve (NMPV) in micro-channel. The design of a NMPV avoids the use of moving-parts. The channel interior geometry is specially desighed to achieve different flow resistance in different flow directions. Under the same pressure difference, the channel flow rate is higher in the direction of smaller resistance. When two NMPV’s are installed properly on the two ends of a pump chamber, a net flow rate will be accumulated in the designed flow pumping direction. The unsteady characteristics of the NMPV installed plays a major role in determining the pump flow rate.
This thesis utilizes CFD as the research tool to study the unsteady characteristics of a saw-toothed NMPV. A diffuser valve and a nozzle valve are used as reference valves for comparison. The numerical results show that, in 2D calculations, when the oscillation frequency of the pump membrane is smaller than or equal to 32 Hz, the saw-toothed NMPV pump has the highest pump flow rate, the nozzle valve pump has less pump flow rate, and the diffuser valve pump has the least pump flow rate. On the contrary, when the oscillation frequency of the pump membrane is greater than 32 Hz, the saw-toothed NMPV pump has less pump flow rate than the other two reference valves. In 3D calculations, the results for pump frequency 32Hz and 100Hz show that the saw-toothed NMPV has the highest pump flow rate among the three NMPV pumps at both frequencies.
[1] Laser, D. J., and Santiago, J. G., “A Review of Micro- pump,”Journal of Micromechanics and Microengineering,
No. 14, R35-R64, 2004.
[2] Krutzch, W. C., and Cooper, P., Pump Handbook,1st ed.,
McGraw-Hill, New York, 2001, Chaps. 1.
[3] Kwang, W. O., and Chong, H. A., “A Review of Micro-
valves,”Journal of Micromechanics and Microengineering
, No. 16, R13-R39, 2006.
[4] Zengerle, R., and Richter, M., “Simulation of Micro-
fluid Systems,” Journal of Micromechanics and Micro-
engineering, No. 4, pp. 192-204, 1994.
[5] Olsson, A., Stemme, G., and Stemme, E., “The First
Valveless Diffuser Gas Pump,”Proceedings of IEEE-
MEMS, pp. 108-113, 1997.
[6] Tesla, N., U.S. Patent “Valvular Conduit,” No.
1,329,599, Feb. 3 1920.
[7] Forster et al., University of Washington, WA, U.S.
Patent ”Micropumps with Fixed Valves,” No.5,876,187,
Mar. 2 1999.
[8] Olsson, A., Stemme, G., and Stemme, E., “ Simulation
Studies of Diffuser and Nozzle Elements for Valve-Less
Micropumps,” Transducers’97 International Conference
on Solid-State Sensors and Actuators, Chicago, Jun.16- 19 1997.
[9] 廖鵬飛, “微管道流無動件閥之研究,” 國立成功大學航空太
空研究所碩士論文, 中華民國93年7月.
[10] 蔡宗立, “微流道內鋸齒狀無動件閥之比較研究,” 國立成功
大學航空太空研究所碩士論文, 中華民國95年6月.
[11] Gamboa, A. R., Morris, C. J., and Forster, F. K.,
“Improvement in Fixed-Valve Micropump Performance
through Shape Optimization of Valves,” Journal of
Fluids Engineering, Vol. 127, pp. 339-346, March.
2005.
[12] Izzo, I., Accoto, D., Menciassi, A., Schmitt, L., and
Dario, P., “Modeling and Experimental Validation of
a Piezoelectric Micropump with Novel No-moving-part
Valves,” Sensors and Actuators A, No. 133, pp. 128-
140, 2007.
[13] Olsson, A., Stemme, G., and Stemme, E.,“Micromachined
Diffuser/Nozzle Elements for Valveless Pumps,”
Proceedings of IEEE-MEMS Workshop, pp. 378-383, 1996.
[14] Gerlach, T., and Wurmus, H., “Working Principle and
Performance of the Dynamic Micropump,” Sensors and
Actuators A, No. 50, pp. 135-140, 1995.