簡易檢索 / 詳目顯示

研究生: 張雲翔
Chang, Yun-Hsiang
論文名稱: 微管道內鋸齒無動件閥之非定常特性研究
A Study of the Unsteady Characteristics of a Saw-toothed No-Moving-Part Valve in Micro-channel
指導教授: 潘大知
Pan, Dartzi
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 81
中文關鍵詞: 鋸齒閥無動件閥
外文關鍵詞: Saw-toothed, NMPV
相關次數: 點閱:116下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討微管道內鋸齒狀無動件閥的非定常態特性。無動件閥在設計上避免使用活動元件,只是利用閥門流道的幾何形狀,使得流體在不同流動方向受到不同的流動阻力,因此在相同的壓差作用之下,阻力較小的方向可產生較大的管道流量。當在幫浦振動腔的進出口管道裝置適當方向的無動件閥門時,由薄膜振動所產生的管道流場會在特定方向累積淨流量。無動件閥門在非定常流場內的特性即成為幫浦流量的主要決定因素。
    本研究以計算流體力學為工具,以擴散閥及噴嘴閥的特性為參考閥門,比較鋸齒閥與參考閥門非定常特性之不同。研究結果顯示在二維計算中,當振動頻率小於32Hz時,鋸齒閥幫浦的幫浦流量最大、噴嘴閥幫浦流量次之、擴散閥幫浦流量最小;但在振動頻率大於 32Hz時,鋸齒閥的幫浦流量反而較參考閥的幫浦流量更小。在三維運算時,本研究比較三種閥門在32Hz及100Hz的幫浦流量,結果顯示鋸齒閥幫浦的流量最高。

    This thesis investigates the unsteady characteristics of a saw-toothed no-moving-part valve (NMPV) in micro-channel. The design of a NMPV avoids the use of moving-parts. The channel interior geometry is specially desighed to achieve different flow resistance in different flow directions. Under the same pressure difference, the channel flow rate is higher in the direction of smaller resistance. When two NMPV’s are installed properly on the two ends of a pump chamber, a net flow rate will be accumulated in the designed flow pumping direction. The unsteady characteristics of the NMPV installed plays a major role in determining the pump flow rate.
    This thesis utilizes CFD as the research tool to study the unsteady characteristics of a saw-toothed NMPV. A diffuser valve and a nozzle valve are used as reference valves for comparison. The numerical results show that, in 2D calculations, when the oscillation frequency of the pump membrane is smaller than or equal to 32 Hz, the saw-toothed NMPV pump has the highest pump flow rate, the nozzle valve pump has less pump flow rate, and the diffuser valve pump has the least pump flow rate. On the contrary, when the oscillation frequency of the pump membrane is greater than 32 Hz, the saw-toothed NMPV pump has less pump flow rate than the other two reference valves. In 3D calculations, the results for pump frequency 32Hz and 100Hz show that the saw-toothed NMPV has the highest pump flow rate among the three NMPV pumps at both frequencies.

    中文摘要……………………………………... Ⅰ 英文摘要..............................Ⅱ 目錄................................ IV 表目錄………………………………………………………………..…..... VII 圖目錄………………………………………………………...…….…..... VIII 符號說明…………………………………………………………….…..... XII 第一章 緒論...................................... 1 1-1 前言......................................... 1 1-1.1 微幫浦元件............................. 3 1-1.2 微閥門元件............................. 7 (1)活動元件閥門........................ 7 (2)無活動元件閥門...................... 8 1-2 無活動元件閥門(NMPV)........................ 10 (1) 不同流向不同路徑........................ 10 (2) 不同流向同一路徑........................ 11 1-3 鋸齒狀無動件微閥門.......................... 13 1-4 研究目的.................................... 15 第二章 理論與數值模擬........................... 17 2-1 基本假設條件與統御方程式.................... 17 2-2 CFD模擬工具................................ 18 2-3 網格建構.................................... 18 2-4 邊界條件.................................... 19 2-5 無活動元件閥雙極性.......................... 20 (1)壓力雙極性(Pressure Diodicity)........... 20 (2)流量雙極性(Mass Flow Diodicity).......... 21 2-6 鋸齒狀無動件閥門的性質驗證.................. 22 (1)雙極性變異............................... 22 (2)鋸齒α角與流動順向之關係.................. 24 第三章 鋸齒閥改良............................... 26 3-1 鋸齒閥與Tesla Valve的結合................... 27 3-2鋸齒閥與擴散閥的結合......................... 33 3-3擴散閥、噴嘴閥與鋸齒閥的結合................. 36 第四章 鋸齒閥於非定常態下之行為探討............. 40 4-1 壓電微幫浦動態模擬簡介...................... 40 4-2 鋸齒閥動態模擬.............................. 42 4-2.1 薄膜位移與鋸齒閥內部流場變化.......... 43 4-2.2 淨流量計算結果........................ 45 4-2.3 鋸齒閥內部流場變化.................... 49 4-2.4 漩渦迴流區............................ 53 4-2.5 中央振動腔內部流場變化................ 56 4-3 擴散閥、噴嘴閥動態模擬...................... 59 4-3.1 擴散閥及噴嘴閥之淨流量計算結果........ 59 4-3.2 擴散閥及噴嘴閥內部流場變化............ 61 4-4 鋸齒閥、擴散閥與噴嘴閥的結果比較............ 63 4-4.1 淨流量結果比較........................ 63 4-4.2 漩渦迴流區之結果比較.................. 64 4-4.3 壓差與淨流量累積之關係................ 67 4-5 鋸齒閥、擴散閥與噴嘴閥之三維結果............ 69 第五章 結論..................................... 76

    [1] Laser, D. J., and Santiago, J. G., “A Review of Micro- pump,”Journal of Micromechanics and Microengineering,
    No. 14, R35-R64, 2004.
    [2] Krutzch, W. C., and Cooper, P., Pump Handbook,1st ed.,
    McGraw-Hill, New York, 2001, Chaps. 1.
    [3] Kwang, W. O., and Chong, H. A., “A Review of Micro-
    valves,”Journal of Micromechanics and Microengineering
    , No. 16, R13-R39, 2006.
    [4] Zengerle, R., and Richter, M., “Simulation of Micro-
    fluid Systems,” Journal of Micromechanics and Micro-
    engineering, No. 4, pp. 192-204, 1994.
    [5] Olsson, A., Stemme, G., and Stemme, E., “The First
    Valveless Diffuser Gas Pump,”Proceedings of IEEE-
    MEMS, pp. 108-113, 1997.
    [6] Tesla, N., U.S. Patent “Valvular Conduit,” No.
    1,329,599, Feb. 3 1920.
    [7] Forster et al., University of Washington, WA, U.S.
    Patent ”Micropumps with Fixed Valves,” No.5,876,187,
    Mar. 2 1999.
    [8] Olsson, A., Stemme, G., and Stemme, E., “ Simulation
    Studies of Diffuser and Nozzle Elements for Valve-Less
    Micropumps,” Transducers’97 International Conference
    on Solid-State Sensors and Actuators, Chicago, Jun.16- 19 1997.
    [9] 廖鵬飛, “微管道流無動件閥之研究,” 國立成功大學航空太
    空研究所碩士論文, 中華民國93年7月.
    [10] 蔡宗立, “微流道內鋸齒狀無動件閥之比較研究,” 國立成功
    大學航空太空研究所碩士論文, 中華民國95年6月.
    [11] Gamboa, A. R., Morris, C. J., and Forster, F. K.,
    “Improvement in Fixed-Valve Micropump Performance
    through Shape Optimization of Valves,” Journal of
    Fluids Engineering, Vol. 127, pp. 339-346, March.
    2005.
    [12] Izzo, I., Accoto, D., Menciassi, A., Schmitt, L., and
    Dario, P., “Modeling and Experimental Validation of
    a Piezoelectric Micropump with Novel No-moving-part
    Valves,” Sensors and Actuators A, No. 133, pp. 128-
    140, 2007.
    [13] Olsson, A., Stemme, G., and Stemme, E.,“Micromachined
    Diffuser/Nozzle Elements for Valveless Pumps,”
    Proceedings of IEEE-MEMS Workshop, pp. 378-383, 1996.
    [14] Gerlach, T., and Wurmus, H., “Working Principle and
    Performance of the Dynamic Micropump,” Sensors and
    Actuators A, No. 50, pp. 135-140, 1995.

    下載圖示 校內:2009-08-07公開
    校外:2009-08-07公開
    QR CODE