簡易檢索 / 詳目顯示

研究生: 許耀中
Hsu, Yao-Chung
論文名稱: 爆震波在突張面傳遞之探討
Detonation Transmission with an Abrupt Area Change
指導教授: 趙怡欽
Chao, Yei-Chin
共同指導: 鍾光民
Chung, Kung-Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 86
中文關鍵詞: 爆震波過驅爆震波預爆震室突張面爆震波再點燃
外文關鍵詞: detonation wave, overdriven detonation, pre-detonator, abrupt area change, detonation re-initiation
相關次數: 點閱:192下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 爆震波的產生對於脈衝爆震波引擎為非常關鍵的一環,尤其是在具有預爆震室的設計裡,如何讓爆震波成功地傳遞在不同反應物於突張的結構下顯得更加重要。在本研究中採用丙烷/氧氣與丙烷/空氣做為兩種不同反應物,並研究在有無突張結構的圓管中對於爆震波傳遞的影響。在預爆震室中,主要產生兩種形態的爆震波做為入射波,分別為自維持爆震波以及過驅爆震波。其中,過驅爆震波的產生方式為改變預爆震室內的初始壓力差,使壓力較低的反應物產生過驅爆震波。在沒有突張的圓管中,爆震波的點燃隨著壓力的增加而產生;當入射爆震波為過驅時,爆震波的點燃機制非常接近於震波放大同步爆炸反應,而點燃條件與初始壓力較無相關。此外,二維效應也在過驅爆震波的過驅度與初始壓力比關係中討論。在有突張結構的圓管下,以預爆震室的入射波之活塞功來表示其強度。當入射波為CJ爆震波時,爆震波的再點燃之產生主要根據預爆震室的初始壓力以及擴張比的變化。此外,利用數值模擬來分析在沒有反應的冷流場中,通過突張面的繞射震波於壁面反射的情形。爆震波的傳遞主要可以分為傳遞震波、爆震波再點燃以及直接點燃,這些模式根據活塞功的大小產生。對稱與非對稱碳跡圖顯示了直接點燃與再點燃之差異。儘管如此,在爆震波傳遞模式中亦發現一延遲區,在此延遲區中,只有快速燃震波被產生。此現象被認為是震波於壁面反射與化學反應相互影響造成。

    Detonation initiation is a crucial step in a pulse detonation system. Further, in the concept of pre-detonator, detonation transmission between two mixtures through an abrupt area change is a critical aspect. In this study, detonation transmission between propane/oxygen and propane/air with and without an abrupt area change was investigated. In the donor, there are two types of incident detonation waves: a self-sustained Chapman–Jouguet (CJ) detonation wave and an overdriven detonation wave generated by the difference in initial donor pressure ratios. In a straight tube with an incident CJ detonation wave, a high initial pressure level is required in the donor for successful detonation transmission. When the incident wave is an overdriven detonation wave, shock wave amplification appears to be the dominant mechanism of detonation re-initiation. The bi-dimensional effect was also examined. In an expansion tube, the piston work is used to characterize the strength of the incident detonation wave. For an incident CJ detonation wave, the re-initiation of a detonation wave in the acceptor depends on the initial pressure in the donor and the expansion ratio. Additionally, a numerical simulation was performed under cold flow conditions for understanding the effect of wall confinement on the reflection of the diffracted shock wave. The regimes of detonation transmission across a mixture include a transmitted shock wave, detonation re-initiation, and smooth detonation transmission, all of which depend on the amplitude of piston work. Axisymmetric and non-axisymmetric soot patterns correspond to direct detonation and detonation re-initiation, respectively. Nevertheless, a delay regime was also observed, and it was thought to result from the effect of wall confinement on the reflected shock wave structure.

    摘要 I 第一章 緒論 III 第二章 文獻回顧 V 第三章 實驗設備 VII 第四章 實驗與討論 – 爆震波在直管中的傳遞 VIII 第五章 實驗與討論 – 爆震波在突張管中的傳遞 IX 第六章 結論 XI 第七章 未來建議 XIII Abstract XIV 誌謝 XVI Contents XIX List of tables XXI List of figures XXII Nomenclature XXVI 1. Introduction 1 1.1 Pulse detonation 1 1.2 Motivation and objectives 6 2. Literature review 7 2.1 Detonation initiation 7 2.2 Detonation transmission 9 2.3 Detonation diffraction 11 2.4 Turbulent jet initiation 13 2.5 Effects of wall confinement 14 3. Experimental setup 17 3.1 Detonation transmission without an area change 17 3.2 Detonation transmission with an area change 20 3.3 Pressure wave velocity measurements: Time of flight 23 4. Results and discussion: Detonation transmission in a straight tube 25 4.1 Case A1: CJ detonation in a straight tube 25 4.2 Case B1: Overdriven detonation wave in a straight tube 27 4.3 Bi-dimensional effect on the degree of overdrive in a donor 35 5. Results and discussion: Detonation transmission in an expansion tube 38 5.1 Direct initiation energy: Theoretical calculation 38 5.2 Shock wave propagation in an expansion tube 40 5.3 Case A2 and Case A3: A CJ detonation wave in an expansion tube 46 5.4 Effect of piston work on detonation transmission 53 5.5 Visualization of detonation transmission: Use of smoked foil 61 5.6 Effect of molar fraction of N2/O2 on detonation transmission (Case A3) 66 5.7 Fast deflagration and terminal velocity 70 5.8 Effect of wall confinement on overdriven detonation transmission 72 6. Conclusions 75 7. Recommendations 77 Reference 78

    Aksamentov, S. M., Manzhaley, V. I., and Mitrofanov, V. V. (1993). "Numerical modeling of galloping detonation." Progress in Astronautics and Aeronautics 153: 112-112.
    Atkinson, R., Bull, D. C., and Shuff, P. J. (1980). "Initiation of spherical detonation in hydrogen-air." Combustion and Flame 39(3): 287-300.
    Bauer, P. A., Presles, H. N., Heuze, O., and Brochet, C. (1986). "Measurement of cell lengths in the detonation front of hydrocarbon oxygen and nitrogen mixtures at elevated initial pressures." Combustion and Flame 64(1): 113-123.
    Benedick, W. B., Guirao, C. M., Knystautas, R., and Lee, J. H. (1986). "Critical charge for the direct initiation of detonation in gaseous fuel-air mixtures." Prog. Astronaut. Aeronaut. 106: 181-202.
    Bollinger, L. E. (1964). "Experimental detonation velocities and induction distances in hydrogen-air mixtures." AIAA Journal 2(1): 131-133.
    Bratkovich, T. E., Aarnio, M. J., Williams, J. T., and Bussing, T. R. A. (1997). "An introduction to pulse detonation rocket engines (PDREs)." AIAA paper(97-2742).
    Brown, C. and G. Thomas (1999). "Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures." Combustion and Flame 117(4): 861-870.
    Brown, C. and G. Thomas (2000). "Experimental studies of ignition and transition to detonation induced by the reflection and diffraction of shock waves." Shock Waves 10(1): 23-32.
    Bussing, T. and G. Pappas (1994). "An introduction to pulse detonation engines." AIAA paper 263.
    Bussing, Thomas, and G. Pappas (1996). "Pulse detonation engine theory and concepts." Developments in high-speed-vehicle propulsion systems, Reston, VA, American Institute of Aeronautics and Astronautics, Inc. Progress in Astronautics and Aeronautics. 165: 421-472.
    Ciccarelli, G. and S. Dorofeev (2008). "Flame acceleration and transition to detonation in ducts." Progress in Energy and Combustion Science 34(4): 499-550.
    Cooper, M., Jackson, S., Austin, J., Wintenberger, E., and Shepherd, J. E. (2002). "Direct experimental impulse measurements for detonations and deflagrations." Journal of Propulsion and Power 18(5): 1033-1041.
    Desbordes, D. (1988). "Transmission of overdriven plane detonations- Critical diameter as a function of cell regularity and size." Dynamics of explosions: 170-185.
    Desbordes, D. and M. Vachon (1986). "Critical diameter of diffraction for strong plane detonations." Progress in Astronautics and Aeronautics 106: 131-143.
    Desbordes, D., and A. Lannoy (1991). "Effects of a negative step of fuel concentration on critical diameter of diffraction of a detonation." Progress in Astronautics and Aeronautics, 133, 170-186.
    Dewey, J. (2001). "Expanding spherical shocks (blast waves)." Handbook of shock waves 2: 441-481.
    Dorofeev, S. B. (2011). "Flame acceleration and explosion safety applications." Proceedings of the Combustion Institute 33(2): 2161-2175.
    Edwards, D. H., Thomas, G. O., and Nettleton, M. A. (1979). "The diffraction of a planar detonation wave at an abrupt area change." Journal of Fluid Mechanics 95(01): 79-96.
    Edwards, D. H., Thomas, G. O., and Williams, T. L. (1981). "Initiation of detonation by steady planar incident shock waves." Combustion and Flame 43: 187-198.
    Elsworth, J. E., Shuff, P. J., and Ungut, A. (1984). "Galloping gas detonations in the spherical mode." Progress in Astronautics and Aeronautics 94: 130-150.
    Engebretsen, T., Bjerketvedt, D., and Sønju, O. K. (1993). "Propagation of gaseous detonations through regions of low reactivity." Progress in Astronautics and Aeronautics 153: 324-324.
    Gavrilenko, T. and E. Prokhorov (1983). "Overdriven gaseous detonations." Progress in Astronautics and Aeronautics 87: 244-250.
    Gordon, W. E., Mooradian, A. J., and Harper, S. A. (1958). "Limit and spin effects in hydrogen-oxygen detonations." In Symposium (International) on Combustion Vol. 7, No. 1, pp. 752-759.
    Glassman, I., Yetter, R. A., and Glumac, N. G. (2014). "Combustion." Academic press. pp. 286-293.
    Guirao, C. M., Knystautas, R., Lee, J. H., Benedick, W., and Berman, M. (1982). "Hydrogen-air detonations." In Symposium (International) on Combustion Vol. 19, No. 1, pp. 583-590.
    Haloua, F., Brouillette, M., Lienhart, V., and Dupré, G. (2000). "Characteristics of unstable detonations near extinction limits." Combustion and Flame 122(4): 422-438.
    Hoffmann, H. (1940). "Reaction-propulsion produced by intermittent detonative combustion." German Research Institute for Gliding, Report ATI-52365.
    Jones, D. A., Sichel, M., and Oran, E. S. (1995). "Reignition of detonations by reflected shocks." Shock Waves 5(1-2): 47-57.
    Kailasanath, K. (2003). "Recent developments in the research on pulse detonation engines." AIAA Journal 41(2): 145-159.
    Kaplan, C. and E. Oran (1991). "Mechanisms of ignition and detonation formation in propane-air mixtures." Combustion science and technology 80(4-6): 185-205.
    Knystautas, R., Guirao, C., Lee, J. H., and Sulmistras, A. (1984). "Measurement of cell size in hydrocarbon-air mixtures and predictions of critical tube diameter, critical initiation energy, and detonability limits." Progress in Astronautics and Aeronautics 94: 23-37.
    Knystautas, R., Lee, J. H., and Guirao, C. M. (1982). "The critical tube diameter for detonation failure in hydrocarbon-air mixtures." Combustion and Flame 48: 63-83.
    Knystautas, R., Lee, J. H., Moen, I., and Wagner, H. G. (1979). "Direct initiation of spherical detonation by a hot turbulent gas jet." In Symposium (International) on Combustion Vol. 17, No. 1, pp. 1235-1245.
    Krivosheev, P. N. and O. G. Penyaz’kov (2011). "Reducing the critical pressure of detonation initiation in transmission to a semiconfined volume." Combustion, Explosion, and Shock Waves 47(3): 323-329.
    Kuznetsov, M., Alekseev, V., Matsukov, I., and Dorofeev, S. (2005). "DDT in a smooth tube filled with a hydrogen–oxygen mixture." Shock Waves 14(3): 205-215.
    Kuznetsov, M., Alekseev, V., Yankin, Y., and Dorofeev, S. (2002). "Slow and fast deflagrations in hydrocarbon-air mixtures." Combustion science and technology 174(5-6): 157-172.
    Kuznetsov, M. S., Alekseev, V. I., Dorofeev, S. B., Matsukov, I. D., and Boccio, J. L. (1998). "Detonation propagation, decay, and reinitiation in nonuniform gaseous mixtures." Symposium (International) on Combustion 27(2): 2241-2247.
    Kuznetsov, M. S., Dorofeev, S. B., Efimenko, A. A., Alekseev, V. I., and Breitung, W. (1997). "Experimental and numerical studies on transmission of gaseous detonation to a less sensitive mixture." Shock Waves 7(5): 297-304.
    Lee, J. H., Knystautas, R., and Yoshikawa, N. (1978). "Photochemical initiation of gaseous detonations." Acta Astronautica 5(11): 971-982.
    Lee, J. and I. Moen (1980). "The mechans of transition from deflagration to detonation in vapor cloud explosions." Progress in Energy and Combustion Science 6(4): 359-389.
    Lee, J. H. (1984). "Dynamic parameters of gaseous detonations." Annual review of fluid mechanics 16(1): 311-336.
    Lee, J. H. and H. Matsui (1977). "A comparison of the critical energies for direct initiation of spherical detonations in acetylene/oxygen mixtures." Combustion and Flame 28: 61-66.
    Lee, J. H., Knystautas, R., and Freiman, A. (1984). "High speed turbulent deflagrations and transition to detonation in H2-air mixtures." Combustion and Flame 56(2): 227-239.
    Li, J. M., Chung, K. M., and Hsu, Y. C. (2015). "Diaphragm effect on the detonation wave transmission across the interface between two mixtures." Combustion, Explosion, and Shock Waves 51(6): 717-721.
    Li, J. M., Lai, W. H., and Chung, K. M. (2006). "Tube diameter effect on deflagration-to-detonation transition of propane–oxygen mixtures." Shock Waves 16(2): 109-117.
    Li, J., Lai, W. H., Chung, K., and Lu, F. K. (2008). "Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air." Combustion and Flame 154(3): 331-345.
    Lieberman, D. H., Parkin, K. L., and Shepherd, J. E. (2002). "Detonation initiation by a hot turbulent jet for use in pulse detonation engines." 38th Joint Propulsion Conference, Indianapolis, IN, July. AIAA 02-3909.
    Lindstedt, R. P. and H. J. Michels (1989). "Deflagration to detonation transitions and strong deflagrations in alkane and alkene air mixtures." Combustion and Flame 76(2): 169-181.
    Litchfield, E. L., Hay, M. H., and Forshey, D. R. (1963). "Direct electrical initiation of freely expanding gaseous detonation waves." In Symposium (International) on Combustion Vol. 9, No. 1, pp. 282-286.
    Lu, F. K., Ortiz, A. A., Li, J. M., Kim, C. H., and Chung, K. M. (2009). "Detection of shock and detonation wave propagation by cross correlation." Mechanical Systems and Signal Processing 23(4): 1098-1111.
    Lynch, E. and R. Edelman (1996). "Analysis of the pulse detonation wave engine." Progress in Astronautics and Aeronautics 165: 473-516.
    Makeev, V. I., Gostintsev, Y. A., Strogonov, V. V., Bokhon, Y. A., Chernushkin, Y. N., and Kulikov, V. N. (1983). "Combustion and detonation of hydrogenair mixtures in free spaces." Combustion, Explosion, and Shock Waves 19(5): 548-550.
    Manzhalei, V. I., Mitrofanov, V. V., and Subbotin, V. A. (1974). "Measurement of inhomogeneities of a detonation front in gas mixtures at elevated pressures." Combustion, Explosion and Shock Waves 10(1): 89-95.
    Matsui, H., and J. H. Lee (1979). "On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures". In Symposium (International) on Combustion Vol. 17, No. 1, pp. 1269-1280.
    Medvedev, S. P., Khomik, S. V., Olivier, H., Polenov, A. N., Bartenev, A. M., and Gelfand, B. E. (2005). "Hydrogen detonation and fast deflagration triggered by a turbulent jet of combustion products." Shock Waves 14(3): 193-203.
    Moen, I. (1993). "Transition to detonation in fuel-air explosive clouds." Journal of hazardous materials 33(2): 159-192.
    Moen, I. O., Murray, S. B., Bjerketvedt, D., Rinnan, A., Knystautas, R., and Lee, J. H. (1982). "Diffraction of detonation from tubes into a large fuel-air explosive cloud." In Symposium (International) on Combustion Vol. 19, No. 1, pp. 635-644.
    Mooradian, A. J. and W. Gordon (1951). "Gaseous Detonation. I. Initiation of Detonation." The Journal of Chemical Physics 19(9): 1166-1172.
    New, T. H., Panicker, P. K., Lu, F. K., and Tsai, H. M. (2006). "Experimental investigations on DDT enhancements by shchelkin spirals in a PDE." AIAA paper 552: 2006.
    Obara, T., Yajima, S., Yoshihashi, T., and Ohyagi, S. (1996). "A high-speed photographic study of the transition from deflagration to detonation wave." Shock Waves 6(4): 205-210.
    Ohyagi, S., Obara, T., Hoshi, S., Cai, P., and Yoshihashi, T. (2002). "Diffraction and re-initiation of detonations behind a backward-facing step." Shock Waves 12(3): 221-226.
    Oran, E. S. and V. N. Gamezo (2007). "Origins of the deflagration-to-detonation transition in gas-phase combustion." Combustion and Flame 148(1): 4-47.
    Pantow, E. G., Fischer, M., and Kratzel, T. (1996). "Decoupling and recoupling of detonation waves associated with sudden expansion." Shock Waves 6(3): 131-137.
    Papalexandris, M. V., Thomas, J. F., Jacobs, C., and Deledicque, V. (2007). "Structural characteristics of detonation expansion from a small channel to a larger one." Proceedings of the Combustion Institute 31(2): 2407-2414.
    Pintgen, F. and J. Shepherd (2009). "Detonation diffraction in gases." Combustion and Flame 156(3): 665-677.
    Reynolds, W. (1986). "The element potential method for chemical equilibrium analysis: Implementation in the interactive program STANJAN, version 3." Technical Rept.
    Roy, G. D., Frolov, S. M., Borisov, A. A., and Netzer, D. W. (2004). "Pulse detonation propulsion: challenges, current status, and future perspective." Progress in Energy and Combustion Science 30(6): 545-672.
    Schultz, E. (2000). "Detonation diffraction through an abrupt area expansion." Diss. California Institute of Technology, 2000.
    Schultz, E. and J. Shepherd (2000). "Detonation diffraction through a mixture gradient." Graduate Aeronautical Laboratories of the California Institute of Technology Technical Report FM00-1.
    Shepherd, J. E., Moen, I. O., Murray, S. B., and Thibault, P. A. (1988). "Analyses of the cellular structure of detonations." In Symposium (International) on Combustion Vol. 21, No. 1, pp. 1649-1658.
    Sorin, R., Zitoun, R., Khasainov, B., and Desbordes, D. (2009). "Detonation diffraction through different geometries." Shock Waves 19(1): 11-23.
    Steen, H. and Schampel, K. (1983). "Experimental investigations on the run-up distance of gaseous detonations in large pipes." Proceedings of the Fourth International Symposium on Loss Prevention and Safety Promotion in the Process Industries. London: Pergamon Press.
    Strehlow, R. A. (1969). "Nature of transverse waves in detonations." Astronautica Acta 14(5): 539-548.
    Takita, K. and T. Niioka (1996). "On detonation behavior of mixed fuels." Shock Waves 6(2): 61-66.
    Urtiew, P. and A. Oppenheim (1966). "Experimental observations of the transition to detonation in an explosive gas." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences: 13-28.
    Vasil'ev, A. (1988). "Diffraction of multifront detonation." Combustion, Explosion, and Shock Waves 24(1): 92-99.
    Vasiléev, A. (1998). "Critical conditions for initiation of cylindrical multifront detonation." Combustion, Explosion and Shock Waves 34(2): 220-225.
    Vasil’ev, A. A., Drozdov, M. S., and Khidirov, S. G. (2006). "Nonclassical regimes of wave diffraction in combustible mixtures." Combustion, Explosion and Shock Waves 42(6): 746-752.
    Voitsekhovskii, B. (1959). "Stationary detonation." Doklady Akademii Nauk SSSR 129(6): 1254-1256.
    Wu, M. H., and W. C. Kuo (2012). "Transition to detonation of an expanding flame ring in a sub-millimeter gap." Combustion and Flame, 159 (3), 1366-1368.
    Yi, T. H., Lou, J., Turangan, C., Choi, J. Y., and Wolanski, P. (2011). "Propulsive performance of a continuously rotating detonation engine." Journal of Propulsion and Power 27(1): 171-181.
    Zel'Dovich, Y. B., Librovich, V. B., Makhviladze, G. M., and Sivashinskil, G. I. (1970). "On the onset of detonation in a nonuniformly heated gas." Journal of Applied Mechanics and Technical Physics 11(2): 264-270.

    下載圖示
    校外:立即公開
    QR CODE