簡易檢索 / 詳目顯示

研究生: 蔣宜芳
Chiang, Yi-Fang
論文名稱: 考慮孔隙水壓波動下飽和粉土質砂土壓縮預測模式
Prediction model for compression of saturated silty sands induce by pore water pressure fluctuations
指導教授: 張文忠
Chang, Wen-Jong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 粉土質砂土麥寮砂孔隙水壓波動壓縮行為震陷理論
外文關鍵詞: silty sands, Mai Liao Sand, repeated loading, compressibility, shakedown theory
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 依據現有水文地質調查與監測資料顯示,台灣中南部地區地層沉陷部分來自於含水層,且已有研究指出不可忽視粉土質砂土其因地下水位升降造成之壓縮量,本研究以高壓Ko壓密系統,以不同細粒料含量之麥寮砂下不同孔隙比之試體進行週期性孔隙水壓波動壓縮試驗,另亦施作等速率應變壓縮試驗,將兩者試驗結果加以比較,可得知麥寮砂因受反覆載重與單向載重之壓縮特性,並且量化因週期性孔隙水壓波動造成之壓縮量,建立麥寮砂因週期性孔隙水壓波動之壓縮預測模式。經過驗證後得本研究建立之預測模式,其各階孔隙水壓波動預測結果皆位於誤差百分比20%上下,因此本研究建立之預測模式具有一定可靠性。

    Based on field monitoring data in central western Taiwan, Hung et al. (2012) reported that compression in aquifer layers is the major source of ground subsidence, and the compression of silty sands due to fluctuations in pore water pressure is important in this subject. Therefore, the purpose of this study is to clarify the compression mechanism of the pore water pressure fluctuations of the Mai Liao Sand (MLS) with different fines content, and to establish a prediction model for the compression of saturated MLS induce by pore water pressure fluctuations. This study used a Periodic Pore Water Pressure Fluctuations Compression Test to measure of repeated loading compression of MLS. The testing results reveal that the compressibility of saturated MLS due to pore water pressure fluctuations is significant and the behaviors agree with the shakedown theory. Then used a Constant Rate of Strain (CRS) Compression Test to measure of one-dimensional loading compression of MLS. Comparing the test results shows that the maximum ratio between the plastic strain of the repeated loading and the plastic strain of the one-dimensional loading is over 8. Then, used the test results as a database to establish prediction model. In the final prediction model for the compression of saturated MLS induce by pore water pressure fluctuations, the percentage deviation of the prediction results is about 20, so the prediction model is reliable.

    摘要 I 致謝 XII 目錄 XIII 表目錄 XVII 圖目錄 XIX 第一章 緒論1 1.1 研究動機與目的1 1.2 研究流程2 1.3 論文內容概述4 第二章 文獻回顧5 2.1 孔隙水壓波動造成含水層之壓縮行為5 2.2 週期性靜水壓升降試驗7 2.3 震陷理論(Shakedown Theorem)9 2.4 現地水壓壓縮擬合試驗12 2.5 麥寮砂基本物理性質20 2.6 Rowe cell23 2.7 等應變速率壓密(Constant rate of strain consolidation)25 第三章 試驗儀器及設備33 3.1 試驗程式34 3.1.1 試程式介紹34 3.1.2 PID運算36 3.2 高壓Ko壓密儀系統38 3.2.1 軸壓加載39 3.2.2 壓力面板40 3.2.3 資料擷取41 3.2.4 感測器校正42 第四章 麥寮砂等應變速率壓縮試驗45 4.1 等應變速率壓縮試驗45 4.1.1 霧式霣落法 (Mist pluviation, MP)45 4.1.2 試體架設50 4.1.3 等應變速率壓縮試驗方法51 4.1.4 壓縮速率決定52 4.1.5 壓縮速率驗證54 4.2 資料分析55 4.3 麥寮砂CRS壓縮試驗結果58 4.3.1 壓縮曲線及壓縮性指數59 第五章 麥寮砂週期性孔隙水壓波動壓縮試驗65 5.1 週期性孔隙水壓波動壓縮試驗65 5.2 資料分析 67 5.3 麥寮砂週期性孔隙水壓波動壓縮試驗結果69 5.3.1 試驗系統控制結果70 5.3.2 週期性孔隙水壓波動引致震陷行為71 5.3.3 週期性孔隙水壓波動之震陷穩定行為75 5.3.4 麥寮砂受反覆載重下之壓縮行為79 5.3.5 麥寮砂反覆加載與單向加載壓縮量比較80 第六章 預測模式建立與驗證83 6.1 預測模式建立83 6.2 預測模式驗證91 第七章 結論與建議95 7.1 結論95 7.2 建議96 參考文獻 97 附錄A100 附錄B103 附錄C109

    1.張嘉偉(1997),「圓錐貫入試驗在粉砂中之標定」,國立交通大學土木工程所碩士論文。
    2.蔡函叡(2013),「飽和顆粒性土壤於K_o反覆荷重下之壓縮行為探討」,國立成功大學土木工程所碩士論文。
    3.洪若安(2006),「非擾動粉土細砂試體之K_o壓密三軸試驗」,國立交通大學土木工程所碩士論文。
    4.劉全修(2008),「台灣中南部粉土質細砂的壓縮性」,國立交通大學土木工程所碩士論文。
    5.黃安斌, 馮道偉, 張文忠, 馮正一(2013),「雲林地區地層下陷特性調查監測與模擬(2)」,科技部,研究報告。
    6.周仕勳(2014),「以反覆三軸K_o壓縮試驗探討週期性靜水壓升降對飽和顆粒性土壤壓縮特性之影響」,國立成功大學土木工程所碩士論文。
    7.張文忠, 周仕勳(2015),週期性水壓升降對飽和顆粒性土壤壓縮特性之影響,第十六屆大地工程學術研究討論會,高雄。
    8.工業技術研究院(2009),「地層下陷分層監測點評析建立及試驗分析計畫」,經濟部水利署
    9.萬鼎工程服務有限公司(2013),「台78 線22K+700 附近地層監測委託服務工作工程地質探查報告書」,交通部公路總局第五區養護工程處
    10.Aboshi, H., Yoshikumi, H. and Maruyama, S. (1970). “Constant loading rate consolidation test.” Soils and foundations 10, 1, 43-56.
    11.Barksdale, R. D. (1972). “Laboratory evaluation of rutting in base course materials.” In Proceedings of 3rd International Conference on Structural Destruction of Asphalt pavements. 161-174.
    12.Huang, AB, Chang, WJ, Hsu, HH, Huang, YJ (2015). “A mist pluviation method for reconstituting silty sand specimens.” Engineering Geology, 188, 1-9.
    13.Hung Wei-Chia, Hwang Cheinway, Liou Jyh-Chau, Lin Yan-Syun, Yang Hsiu-Lung.(2012). “Modeling aquifer-system compaction and predicting land subsidence in central Taiwan.” Engineering Geology, 147-148, 78-90.
    14.Johnson, K. L., (1986), “Plastic Flow, Residual Stresses and Shakedown in Rolling Contact.” Proceedings of the 2nd International Conference on Contact Mechanics and Wear of Rail/Wheel Systems
    15.Lambe, T. W. and Whitman, R. V., (1979), “Soil Mechanics SI Version” John Wiley & Sons, Ch.10.
    16.Lee, K. (1981). “Consolidation with constant rate of deformation.” Geotechnique 31, 2, 215-229.
    17.National Instrument Ltd., (2001), “PID control toolset user manual.”
    18.Pestana, J. M., and Whittle, A. J., (1995), “Compression model for cohesionless soils ”Geotechnique, Vol. 45(4), 611-631.
    19.Rowe PW, Barden L (1966) “A new consolidation cell” Geotechnique 16(2), 519-539.
    20.Wissa, A. E. Z, Christian, J. T., Davis, E. H. and Heiberg, S. (1971). “Consolidation at constant rate of strain” J. Soil Mech. Fdns. Div., 1, 1393-1413.
    21.Chang Wen-Jong, Chou Shih-Hsun, Huang An-Bin. (2017) “Physical simulation of aquifer compression due to groundwater fluctuation” Engineering Geology, 231, 157-164.

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE