| 研究生: |
謝慶文 Hsieh, Chin-Wen |
|---|---|
| 論文名稱: |
不同外徑/壁厚比尖銳凹槽6061-T6鋁合金管在循環彎曲負載下行為與毀損之理論研究 Theoretical Analysis of Response and Failure for Local Sharp-notched 6061-T6 Aluminum Alloy Tubes with Different Diameter-to-thickness Ratios under Cyclic Bending |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 有限元素ANSYS分析 、不同外徑/壁厚比 、尖銳凹槽6061-T6鋁合金管 、彎矩 、曲率 、橢圓化 、應力 、應變 、疲勞模式 |
| 外文關鍵詞: | ANSYS Workbench 16.0, Local sharp-notched 6061-T6 Aluminium Tubes, Different Diameter-thickness Ratios, Moment, Curvature, Ovalization, Stress, Strain, Mode of Fatigue Failure |
| 相關次數: | 點閱:85 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是模擬不同外徑/壁厚比不同凹槽深度的尖銳凹槽6061- T6鋁合金圓管在承受對稱曲度循環彎曲負載的行為與毀損。在設定適當的幾何尺寸、網格元素數量、邊界條件、負載條件、時間步階與後處理, ANSYS Workbench 16.0可用來分析相關的力學行為(彎矩、橢圓化、應力與應變)。根據ANSYS模擬彎矩-曲率關係顯示,在相同的外徑/壁厚比值時,凹槽深度對關係圖的影響非常小。至於橢圓化-曲率關係顯示,沒有凹槽深度的圓管呈現對稱和棘齒狀增加的變化,而當外徑/壁厚比值越大時或凹槽深度值越大時,橢圓化值成長的越快且越不對稱。將模擬數據結果與實驗結果【16】進行比較後顯示,模擬的分析能合理描述實驗結果。接著,運用ANSYS計算出應力與應變幅度後,再與實驗【16】所求得之疲勞損毀圈的數值,標示於雙對數座標中。由於應變幅度-疲勞損毀圈數在雙對數座標中幾乎收斂於一條直線,因此,本文提出疲勞模式,並根據直線的斜率及截距,求得所對應的疲勞參數值。
In this paper, the finite element software ANSYS Workbench 16.0 is used to analyze the mechanical behaviour of local sharp-notched circular tubes under cyclic bending. The mechanical behaviour includes the moment-curvature and ovalization-curvature relationships. The tube’s dimensions include three different diameter-thickness ratios and five different notch depths. According to the simulation results, the sharp-notched depth increases, the unsymmetrical phenomenon of the ovalization-curvature relationship becomes obvious and the speed of ovalization accelerates. By comparison of simulation and experimental results, the simulation can reasonable describe the mechanical behaviour of experiment. Finally, ANSYS Workbench 16.0 is employed to calculate the magnitude of stress and strain amplitudes. Next, the stress and strain amplitudes and the experimental number of fatigue failure cycles [16] are plotted in double logarithmic coordinates. Because the strain amplitude - the number of fatigue failure cycles relationship in double logarithmic coordinates is almost converged to a regression line, the mode of fatigue failure is proposed in this study. According to the slope and intercept of the straight line, it can be calculated the corresponding material parameters.
1.Shaw, P. K., and Kyriakides, S., “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending,” International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1110, 1985.
2.Kyriakides, S., and Shaw, P. K., “Inelastic Buckling of Tubes under Cyclic Loads,” ASME Journal of Pressure Vessel and Technology, Vol. 109, pp. 169-178, 1987.
3.Pan, W. F., Wang T. R., and Hsu, C. M., “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending,” Experimental Mechanics, Vol. 38, No. 2, pp. 99-102, 1998.
4.Pan, W. F., and Her, Y. S., “Viscoplastic collapse of thin-walled tubes under cyclic bending,” ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp 287-290, 1998.
5.Lee, K. L., Pan, W. F., and Kuo, J. N., “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending,” International Journal of Solids and Structures, Vol. 38, No. 14, pp 2401-2413, 2001.
6.Lee, K. L., and Pan, W. F., “The Effect of Mean Curvature on the Response and Collapse of Thin-Walled Tubes under Cyclic Bending,” JSME International Journal Solid Mechanics and Material Engineering, Vol. 45, No. 2, pp 309-318, 2002.
7.Chang, K. H., Lee, K. L., and Pan, W. F., “A Design of Section-Deformation Measurement Apparatus for Circular Tubes under Cyclic Bending,” Journal of Technology, Vol. 23, No. 1, pp 21-28, 2008.
8.Lee, K. L., Hung, C. Y., Chang, H. Y., and Pan, W. F., “Buckling Life Estimation of Circular Tubes of Different Materials under Cyclic Bending,” Journal of the Chinese Institute of Engineers, Vol. 33, No. 2, pp 254-270, 2010.
9.Lee, K. L., Hung, C. Y., and Pan, W. F., “Experimental analysis on the buckling failure of elliptical-notched circular tubes subjected to cyclic bending,” Journal of Chung Cheng Institute of Technology, Vol. 41, No. 2, pp 183-190, 2012.
10.Lin, B. Y., “The Buckling Failure of Sharp-notched 6061-T6 Aluminum Alloy Tubes under Cyclic Bending,” Nation Cheng Kung University, Tainan, Taiwan, 2013.
11.Lee, K. L., Hsu, C. M., and Pan, W. F., “Finite element analysis of circular tubes subjected to cyclic bending with or without external pressure,” Journal of Technology, Vol. 29, No. 4, pp 229-238, 2014.
12.Wu, C. C., “Experimental Study on the Response of Dented Circular Tubes under Cyclic Bending,” Nation Cheng Kung University, Tainan, Taiwan, 2015.
13.Lee, K. L., Lin, C. J., and Pan, W. F., “Mechanical Behavior and Buckling Failure of Local Sharp-notched SUS304 Stainless Steel Tubes Subjected to Cyclic Bending,” Journal of Science and Engineering Technology, Vol. 11, No. 1, pp 9-19, 2015.
14.Lee, K. L., and Pan, W. F., “Experimental and Theoretical Analysis of the Response for 316L Stainless Tubes under Pure Bending Creep and Relaxation,” Journal of Technology, Vol. 30, No. 3, pp 163-170, 2015.
15.Wang, J. J., “Response and Failure of Local Round-dented Circular Tubes with Different Diameter-to- thickness Ratios under Cyclic Bending,” Nation Cheng Kung University, Tainan, Taiwan, 2016.
16.邱政諄,不同外徑/壁厚比局部尖銳凹槽圓管在循環彎曲負載下行為及毀損之研究,國立成功大學工程科學系碩士論文,台南,台灣,2018。
校內:2023-01-25公開