| 研究生: |
施昶亘 Shih, Chang-Hsuan |
|---|---|
| 論文名稱: |
以萘環為骨架之綠色螢光蛋白衍生物之環化反應:合成、性質 Cyclization Reactions of Naphthalene-Based Green Fluorescent Protein Derivatives: Synthesis and Properties |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 銅離子 、環化反應 、共軛系統 、光譜紅移 、自由基中間體 |
| 外文關鍵詞: | copper(II), cyclization, conjugated system, TEMPO |
| 相關次數: | 點閱:78 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗室先前的實驗中,於以 Cu (II) 和 o-ABDI 衍生物進行結晶培養的過程中,意外地生成了環化產物 DHPIO。與其未環化前的前驅物相比,DHPIO 的吸收與螢光光譜皆出現藍移現象,且其分子結構更為剛性,不易扭轉,進而導致螢光量子產率的提升。
根據文獻報導,引入共軛系統可導致光譜產生紅移。因此,本研究設計在分子結構中引入額外的共軛系統,期望能使環化產物的吸收與螢光光譜產生紅移,並進一步提升其螢光量子產率。於是本研究參考文獻及實驗室學長姐既有的合成路徑,成功合成出綠色螢光蛋白衍生物 o-CDHPNMI 及其環化產物 CDHPMIO。因分子結構中的共軛程度及結構鋼性的增加,觀察結果顯示,CDHPMIO 相較於其前驅物 o-CDHPNMI,呈現吸收與螢光光譜紅移的趨勢,且其螢光量子產率仍顯著提升,達到期望的實驗結果。此外,o-CDHPNMI 在短波長激發下,顯現出雙重螢光放射光譜,此現象可能源於激發態下分子結構的扭轉與否所造成之不同構型所致。
並在環化反應條件中額外加入 TEMPO,意外合成出反應中間體 o-CDHPNMI-TEMPO,此一結果證實了環化機制中涉及自由基中間體的存在。
In previous experiments conducted in our laboratory, an unexpected cyclized product, DHPIO, was obtained during crystallization of Cu (II) with o-ABDI derivatives. Compared to its non-cyclized precursor, DHPIO exhibited blue-shifted absorption and fluorescence spectra. Additionally, the increased molecular rigidity due to cyclization suppressed intramolecular rotation, resulting in a significant enhancement of the fluorescence quantum yield.
According to literature reports, the introduction of extended conjugation systems can induce red-shifted optical spectra. Therefore, this study was designed to incorporate additional conjugated moieties into the molecular structure, with the aim of shifting the absorption and emission wavelengths of the cyclized products toward longer wavelengths, while also enhancing their fluorescence quantum yields. Based on previous literature and established synthetic protocols developed by former members of our research group, we successfully synthesized the green fluorescent protein (GFP) derivative o-CDHPNMI and its cyclized product CDHPMIO. Due to the increased molecular conjugation and structural rigidity, CDHPMIO exhibited a red-shift in both absorption and fluorescence spectra compared to its precursor o-CDHPNMI. Moreover, its fluorescence quantum yield was significantly enhanced, achieving the desired experimental outcome.
By introducing TEMPO into the cyclization reaction conditions, the intermediate product o-CDHPNMI-TEMPO was unexpectedly isolated. This result provides clear evidence for the involvement of a radical intermediate in the proposed cyclization mechanism.
1.Riesgo, E.C., Jin, X., and Thummel, R.P., Introduction of benzo [h] quinoline and 1, 10-phenanthroline subunits by friedländer methodology. The Journal of Organic Chemistry, 1996, 61, 3017-3022.
2.陳怡惠, 綠色螢光蛋白類似物的合成, 光物理及光異構化反應之探討, 2012.
3.黃世昱, 具有鄰位氨基丙烷-2, 3-二醇側鏈的綠色螢光蛋白發光團: 合成, 性質及應用, 2021.
4.Shimomura, O., Discovery of green fluorescent protein (GFP)(Nobel Lecture). Angewandte Chemie International Edition, 2009, 48, 5590-5602.
5.Yang, T.-T., Cheng, L., and Kain, S.R., Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic acids research, 1996, 24, 4592-4593.
6.Stafforst, T. and Diederichsen, U., Synthesis of Alaninyl and N‐(2‐Aminoethyl) glycinyl Amino Acid Derivatives Containing the Green Fluorescent Protein Chromophore in Their Side Chains for Incorporation into Peptides and Peptide Nucleic Acids. Wiley Online Library, 2007.
7.Nantasenamat, C., et al., Prediction of GFP spectral properties using artificial neural network. Journal of Computational Chemistry, 2007, 28, 1275-1289.
8.Follenius-Wund, A., et al., Fluorescent derivatives of the GFP chromophore give a new insight into the GFP fluorescence process. Biophysical journal, 2003, 85, 1839-1850.
9.Kojima, S., et al., Fluorescent properties of model chromophores of tyrosine-66 substituted mutants of Aequorea green fluorescent protein (GEP). Tetrahedron Letters, 1998, 39, 5239-5242.
10.Webber, N.M., Litvinenko, K.L., and Meech, S.R., Radiationless relaxation in a synthetic analogue of the green fluorescent protein chromophore. The Journal of Physical Chemistry B, 2001, 105, 8036-8039.
11.Loudet, A. and Burgess, K., BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chemical reviews, 2007, 107, 4891-4932.
12.Wu, L. and Burgess, K., Syntheses of highly fluorescent GFP-chromophore analogues. Journal of the American Chemical Society, 2008. 130, 4089-4096.
13.Baldridge, A., et al., Inhibition of twisting of a green fluorescent protein-like chromophore by metal complexation. Chemical communications, 2010, 46, 5686-5688.
14.Chen, K.-Y., et al., Ortho green fluorescence protein synthetic chromophore; excited-state intramolecular proton transfer via a seven-membered-ring hydrogen-bonding system. Journal of the American Chemical Society, 2007, 129, 4534-4535.
15.Heim, R., Cubitt, A.B., and Tsien, R.Y., Improved green fluorescence. Nature, 1995, 373, 663-664.
16.Tsien, R.Y., The green fluorescent protein. Annual review of biochemistry, 1998, 67, 509-544.
17.Ormö, M., et al., Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996, 273, 1392-1395.
18.He, X., Bell, A.F., and Tonge, P.J., Synthesis and spectroscopic studies of model red fluorescent protein chromophores. Organic letters, 2002, 4, 1523-1526.
19.Jana, R., et al., Copper-catalyzed addition of water affording highly substituted furan and unusual formation of naphthofuran ring from 3-(1-alkenyl)-2-alkene-1-al. Tetrahedron Letters, 2010, 51, 273-276.
20.Tang, B.-X., et al., Copper-catalyzed intramolecular C− H oxidation/acylation of formyl-N-arylformamides leading to indoline-2, 3-diones. Journal of the American Chemical Society, 2010, 132, 8900-8902.
21.Sherman, E.S., et al., Copper (II) acetate promoted oxidative cyclization of arylsulfonyl-o-allylanilines. Organic Letters, 2004, 6, 1573-1575.
22.Zabawa, T.P., D. Kasi, and S.R. Chemler, Copper (II) acetate promoted intramolecular diamination of unactivated olefins. Journal of the American Chemical Society, 2005, 127, 11250-11251.
23.Yang, R., et al., Copper-mediated intramolecular aza-Wacker-type cyclization of 2-alkenylanilines toward 3-aryl indoles. Tetrahedron Letters, 2017, 58, 445-448.
24.Yang, T., et al., Synthesis of CF3-Substituted 1, 6-Dihydropyridazines by Copper-Promoted Cascade Oxidation/Cyclization of Trifluoromethylated Homoallylic N-Acylhydrazines. The Journal of Organic Chemistry, 2020, 85, 12304-12314.
25.Zhao, N., et al., Enhanced Hypsochromic shifts, quantum yield, and π–π interactions in a meso, β-Heteroaryl-fused BODIPY. The Journal of organic chemistry, 2017, 82, 3880-3885.
26.Cai, Y., et al., Microwave-promoted tin-free iminyl radical cyclization with TEMPO trapping: A practical synthesis of 2-acylpyrroles. Organic letters, 2015, 17, 488-491.
27.Jiang, X., Zhang, J., and Ma, S., Iron catalysis for room-temperature aerobic oxidation of alcohols to carboxylic acids. Journal of the American Chemical Society, 2016, 138, 8344-8347.
28.Chu, X.-Q., et al., Iron catalysis for modular pyrimidine synthesis through β-ammoniation/cyclization of saturated carbonyl compounds with amidines. The Journal of Organic Chemistry, 2017, 82, 1145-1154.
29.Betzemeier, B., et al., Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions. Tetrahedron Letters, 2000, 41, 4343-4346.
30.Paderes, M.C. and Chemler, S.R., Stereoselective Copper‐Catalyzed Intramolecular Alkene Aminooxygenation: Effects of Substrate and Ligand Structure on Selectivity. Wiley Online Library, 2011.
31.Hu, Z. and Kerton, F.M., Simple copper/TEMPO catalyzed aerobic dehydrogenation of benzylic amines and anilines. Organic & biomolecular chemistry, 2012, 10, 1618-1624.
32.Lu, W. and Shen, Z., Direct synthesis of alkenylboronates from alkenes and pinacol diboron via copper catalysis. Organic Letters, 2018, 21, 142-146.
33.Lippert, E., et al., Umwandlung von elektronenanregungsenergie. Angewandte Chemie, 1961, 73, 695-706.
34.Rotkiewicz, K., Grellmann, K., and Grabowski, Z., Reinterpretation of the anomalous fluorescense of pn, n-dimethylamino-benzonitrile. Chemical Physics Letters, 1973, 19, 315-318.
35.Grabowski, Z.R., Rotkiewicz, K., and Siemiarczuk, A., Dual fluorescence of donor-acceptor molecules and the twisted intramolecular charge transfer (TICT) states. Journal of Luminescence, 1979, 18, 420-424.
36.Stafforst, T. and Diederichsen, U., Cover Picture: Synthesis of Alaninyl and N‐(2‐Aminoethyl) glycinyl Amino Acid Derivatives Containing the Green Fluorescent Protein Chromophore in Their Side Chains for Incorporation into Peptides and Peptide Nucleic Acids. European Journal of Organic Chemistry, 2007, 6, 883-883.
37.Brouwer, A.M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 2213-2228.