簡易檢索 / 詳目顯示

研究生: 周立志
Chou, Li-Chih
論文名稱: 內含雙螺旋聲學共振器之吸音材料分析
Analysis of Sound Absorption Materials with Double-Spiral Acoustic Resonators
指導教授: 陳蓉珊
Chen, Jung-San
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 69
中文關鍵詞: 聲學阻抗理論雙螺旋共振器吸音率
外文關鍵詞: Acoustic impedance theory, Double-spiral resonator, Absorption coefficient
相關次數: 點閱:134下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著工業的高度發展,人們越來越關注噪音問題,噪音除了使人們感到不適,高分貝的音量更是會損害聽力造成永久性傷害。然而,低頻噪音(<500Hz)由於較長的波長,難以利用泡棉、纖維等傳統多孔性吸音材料進行聲音吸收。因此在此研究中,將針對低頻聲音進行共振吸音結構設計,目標在低頻有全吸收的效果並拓寬其吸收頻寬,利用理論預測並控制其聲音吸收頻段。
    本文提出內含雙螺旋聲學共振器之吸音材料,依據阻抗理論設計結構幾何,進行結構最佳化,使最大吸收率的頻段發生在預期區域。搭配有限元素模擬軟體 COMSOL Multiphysics 驗證理論吸收率的正確性,並觀察共振腔能量損耗、聲壓場與粒子速度場。最後以三維列印技術製作實驗樣本,在 ISO-10534-2 規範下使用阻抗管系統量測樣本聲音吸收率,交互比對理論、模擬及實驗結果。理論結果顯示此材料可在最低309Hz達到聲音全吸收,並有吸收頻寬20Hz (聲音吸收率 > 0.5),且其樣本厚度與波長比率可小至1.08%。除了單層雙螺旋聲學共振器之外,本文也延伸研究雙層共振器的設計,藉以拓寬低頻吸收頻寬。

    In recent years, with the rapid development of industry, people have been paying more and more attention to noise control. In addition to making people feel uncomfortable, high-decibel noise causes permanent hearing damage. Low-frequency noise (< 500 Hz) is difficult to absorb with traditional porous sound-absorbing materials, such as foam and fibers. Therefore, in this study, we design an alternative absorbing structure for alleviating low-frequency sound. The goal is to achieve total absorption at low frequency, broaden absorption bandwidth, and manipulate sound absorption band.
    In this thesis, Double-spiral resonator (DSR) is proposed. By using the acoustic impedance theory, the structural geometry is designed for attaining that the maximum sound absorption in the frequency range of interest. With the finite element simulation software COMSOL Multiphysics, the theoretical absorption coefficient of the models is verified, and the acoustic pressure field, particle velocity field, and energy loss mechanism in the resonant cavity are examined. Finally, three-dimensional printing technology is used to fabricate test specimens, and the impedance tube system is employed to measure the sound absorption coefficient under the ISO-10534-2 standard. Theoretical results show that the DSR can achieve total sound absorption at 309 Hz and create an absorption bandwidth of 20 Hz (sound absorption coefficient > 0.5), and a thickness-to-wavelength ratio is about 1.08%. In addition to the single-layer structure, the further designs of the Two-layer resonators are also proposed.

    CHAPTER 1 INTRODUCTION 1 1.1 Research motivation 1 1.2 Literature review 2 1.3 Chapter outline 6 CHAPTER 2 THEORY 7 2.1 State equation 7 2.2 Continuity equation 8 2.3 Momentum equation 9 2.4 Wave equation 10 2.5 Impedance theory 12 2.5.1 Definition of impedance 12 2.5.2 The propagation of plane sound waves in narrow tubes 13 2.5.3 Transfer-impedance method 14 2.5.4 Coiled quarter-wave resonator 16 2.5.5 Coiled QWRs in parallel 17 2.5.6 Double-spiral resonator 18 2.5.7 Two-layer coiled QWRs in parallel 20 2.5.8 Two-layer DSR in parallel 20 2.6 Sound absorption calculation 21 2.6.1 Impedance method 21 2.6.2 Two-microphone method 22 CHAPTER 3 MODEL DESIGN AND SIMULATION 24 3.1 Design of acoustic resonators 24 3.1.1 Structural optimization for QWR 24 3.1.2 Structural optimization for DSR 28 3.2 Finite element analysis for DSR 31 3.2.1 Simulation settings 33 3.2.2 Convergence analysis 34 3.2.3 Simulated absorption coefficient by the two-microphone method 36 3.2.4 Energy dissipation 37 3.2.5 Pressure and velocity field 39 3.2.6 End correction validation 40 3.2.7 Different length analysis 41 3.3 Simulated analysis for Two-layer QWRs 42 3.3.1 Simulated absorption coefficient by the two-microphone method 43 3.3.2 Pressure and velocity field 44 3.4 Simulated analysis for Two-layer DSRs 45 3.4.1 Simulated absorption coefficient by the two-microphone method 46 3.4.2 Pressure and velocity field 47 3.5 Comparison of different models 48 CHAPTER 4 EXPERIMENT 50 4.1 Sound absorption coefficient measurement 50 4.1.1 Set up 50 4.1.2 Working frequency range 51 4.1.3 Test specimen 52 4.1.4 Test procedure 52 4.2 Experimental results 56 4.2.1 Thin panel with DSR 56 4.2.2 Thin panel with Two-layer QWRs 60 4.2.3 Thin panel with Two-layer DSRs 62 4.2.4 Comparison of different models 64 CHAPTER 5 CONCLUSIONS AND FUTURE WORK 66 5.1 Conclusions 66 5.2 Future works 66 References 67

    [1] J. Allard and N. Atalla, "Propagation of sound in porous media: modelling sound absorbing materials 2e", John Wiley & Sons, Inc., New York, 2009.
    [2] L. Cao, Q. Fu, Y. Si, B. Ding, and J. Yu, "Porous materials for sound absorption", Compos. Commun., vol. 10, pp. 25–35, 2018.
    [3] H. Meng, Q. B. Ao, S. W. Ren, F. X. Xin, H. P. Tang, and T. J. Lu, "Anisotropic acoustical properties of sintered fibrous metals", Compos. Sci. Technol., vol. 107, pp. 10–17, 2015.
    [4] U. Magrini and P. Ricciardi, "Surface Sound Acoustical Absorption Properties of Multilayer Panels", The 29th International Congress and Exhibition on Noise Control Engineering, France, 2000.
    [5] H. Von Helmholtz and A. J. Ellis, "On the Sensations of Tone as a Physiological Basis for the Theory of Music", Longmans, Green and Company, London, 1875.
    [6] M. B. Xu, A. Selamet, and H. Kim, "Dual Helmholtz resonator", Appl. Acoust., vol.71, no. 9, pp. 822–829, 2010.
    [7] A. I. Komkin, M. A. Mironov, and A. I. Bykov, "Sound absorption by a Helmholtz resonator", Acoust. Phys., vol. 63, no. 4, pp. 385–392, 2017.
    [8] X. Cai, Q. Guo, G. Hu, and J. Yang, "Ultrathin low-frequency sound absorbing panels based on coplanar spiral tubes or coplanar Helmholtz resonators", Appl. Phys. Lett., vol. 105, no. 12, p. 121901, 2014.
    [9] C. Chen, Z. Du, G. Hu, and J. Yang, "A low-frequency sound absorbing material with subwavelength thickness", Appl. Phys. Lett., vol. 110, no. 22, p. 221903, 2017.
    [10] C. Zhang and X. Hu, "Three-Dimensional Single-Port Labyrinthine Acoustic Metamaterial: Perfect Absorption with Large Bandwidth and Tunability", Phys. Rev. Appl., vol. 6, no. 6, p. 064025, 2016.
    [11] L. Liu, H. Chang, C. Zhang, and X. Hu, "Single-channel labyrinthine metasurfaces as perfect sound absorbers with tunable bandwidth", Appl. Phys. Lett., vol. 111, no. 8, p. 083503, 2017.
    [12] Z. Liang and J. Li, " Extreme Acoustic Metamaterial by Coiling Up Space", Phys. Rev. Lett., vol. 108, no. 11, p. 114301, 2012.
    [13] A. O. Krushynska, F. Bosia, and N. M. Pugno, "Labyrinthine acoustic metamaterials with space-coiling channels for low-frequency sound control", Acta Acust. united with Acust., vol. 104, no. 2, pp. 200–210, 2018.
    [14] Y. X. Gao, Y. P. Lin, Y. F. Zhu, B. Liang, J. Yang, J. Yang, and J. C. Cheng, "Broadband thin sound absorber based on hybrid labyrinthine metastructures with optimally designed parameters", Sci. Rep., vol. 10, no. 1, pp. 1–6, 2020.
    [15] L. E. Kinsler, A. R. Frey, H. Coppens, and J. V. Sanders, "Fundamentals of acoustics", John Wiley & Sons, Inc., New York , 1982.
    [16] M. R. Stinson, "The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape", J. Acoust. Soc. Am., vol. 89, no. 2, pp. 550-558, 1991.
    [17] Y. H. Cheng, "Sound Absorption Analysis of Thin Panels", Master's Thesis, National Cheng Kung University, Taiwan, 2019.
    [18] S. R. Iqbal and H. M. A. Majeed, "End correction of a resonant standing wave in open pipes of different diameters", J. Nat. Sci. Res., vol. 3, no. 4, pp. 21-25, 2013.
    [19] F. C. Karal, "The Analogous Acoustic Impedance for Discontinuities and Constrictions of Circular Cross Section", J. Acoust. Soc. Am., vol. 25, no. 2, pp. 327–334, 1953.
    [20] U. Ingard, "On the Theory and Design of Acoustic Resonators", J. Acoust. Soc. Am., vo. 25, no. 6, pp. 1037–1061, 1953.
    [21] R. T. Randeberg, "Perforated Panel Absorbers with Viscous Energy Dissipation Enhanced by Orifice Design", Doctoral Thesis, Norwegian University of Science and Technology, Trondheim, 2000.
    [22] R.Neubauer, B.Kostek, "Prediction of the reverberation time in rectangular rooms with non-uniformly distributed sound absorption", Arch. Acoust., vol. 26, no. 3, pp. 183–201, 2001.
    [23] W. T. Chu, "Extension of the two-microphone transfer function method for impedance tube measurements", J. Acoust. Soc. Am., vol. 80, no. 1, pp. 347–348, 1986.
    [24] A. F. Seybert and D. F. Ross, "Experimental determination of acoustic properties using a two-microphone random-excitation technique", J. Acoust. Soc. Am., vol. 61, no. 5, pp. 1362–1370, 1977.
    [25] "COMSOL Multiphysics", Acoustic Module User’s Guide version 5.0, 2014.
    [26] W. Na, "Frequency Domain Linearized Navier-Stokes Equations Methodology for Aero-Acoustic and Thermoacoustic Simulations", Licentiate Thesis, Sweden, 2015.
    [27] J. A. Cordioli, G. C. Martins, P. H. Mareze, and R. Jordan, "A comparison of models for visco-thermal acoustic problems", Institute of Noise Control Engineering., vol. 2010, no. 4, pp. 6992–7001, 2010.
    [28] EN ISO 10534-2, "Determination of sound absorption coefficient and acoustic impedance with the interferometer, Part2: Transfer function method", British Standard Institution, London.

    下載圖示 校內:2025-08-20公開
    校外:2025-08-20公開
    QR CODE