| 研究生: |
楊玉安 Yang, Yu-An |
|---|---|
| 論文名稱: |
歐式連續型上限式障礙選擇權評價 Valuation of Continuous European Up-and-Out Call Option with Time-dependent Rebate |
| 指導教授: |
王明隆
Wang, Ming-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所 Graduate Institute of Finance |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 積分方法 、障礙選擇權 |
| 外文關鍵詞: | barrier option, integral method |
| 相關次數: | 點閱:52 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以解析方法求解障礙選擇權,僅於障礙條件為簡單之常數形式或是時間之自然對數指數函數時才可行。一般常用之樹狀評價模型則往往產生許多評價誤差。蒙地卡羅模擬方法亦受制於其模擬偏誤及計算耗時等缺點。本研究採取積分方法求解障礙選擇權之評價問題。大多數的選擇權評價問題皆可透過變數轉換的處理過程成為熱傳導方式,此偏微分方程式為一同質線性方程式,而積分方法乃求解同質線性方程式問題之方法中,最精確而有效率的方法之一。透過積分方法可有效率地求得大部分奇異選擇權之精確數值解。本研究以歐式連續型上限式障礙選擇權評價作為積分方法之應用實例,並探討其獨特之時間與波動性之效果。此外,積分方法亦可應用於評價離散型障礙選擇權,並可進一步擴充為邊界元素法以求解自由邊界問題。
Analytical technique works only for options with simple barriers. Widely-used lattice models usually suffer form various types of pricing errors. Monte Carlo method is also subject to simulation bias. In our study, we adopt an integral method, which the most efficient and accurate numerical method for calculating the numerical value of a homogeneous linear P.D.E. such as the Heat Equation, into which option pricing problem can generally be transformed. By means of the integral method, accurate value of most exotic options can be obtained efficiently. In this paper, an up-and-out call is adopted to be a numerical example of the application of the integral method, and its particular characteristics in respect of time and volatility are discussed. For further researches, our integral method is also excellent at pricing discrete barrier options and can be extend to be Boundary Element Method (B.E.M.) for solving free boundary problems.
Andricopoulos, A.D., M. Widdicks, P.W. Duck, D.P. Newton. 2003. Universal Option Valuation Using Quadrature Methods. Journal of Financial Economics 67, 447–471.
Black, F., M. Scholes. 1973. The pricing of options and corporate liabilities. Journal of Political Economy 81, 637–659.
Boyle, P.P. 1977. Options: a Monte Carlo Approach. Journal of Financial Economics 4, 323–338.
Boyle, P.P. 1986. Option Valuation Using a Three-Jump Process. International Options Journal 3, 7-12.
Boyle, P.P., S.H. Lau. 1994. Bumping Up Against the Barrier with the Binomial Method. Journal of Derivatives 2, 6-14.
Boyle, P.P., M. Broadie, P. Glasserman. 1999. Monte Carlo methods for security pricing. Journal of Economic Dynamics and Control 21, 1267-1321.
Broadie, M., J. B. Detemple. 1995. American Capped Call Options on Dividend -Paying Assets. Review of Financial Studies, 8, 161-191.
Carr, P. 1995. Two Extensions to barrier option valuation. Applied Mathematical Finance 2, 173-209.
Cox, J.C., S. A. Ross. 1976. The Valuation of Options for Alternative Stochastic Processes. Journal of Financial Economics 3, 145-166.
Cox, J.C., S. A. Ross, M. Rubinstein. 1979. Option Pricing: A Simplified Approach.” Journal of Financial Economics 7, 229-264.
Figlewski, S., B. Gao. 1999. The adaptive mesh model: a new approach to efficient option pricing. Journal of Financial Economics 53, 313-351.
Figlewski, S., B. Gao, D. Ahn. 1999. Pricing Discrete Barrier Options with an Adaptive Mesh Model. Journal of Derivatives 2, 33-44.
Geman, H., M. Yor. 1996. Pricing and Hedging Double-Barrier Options: A Probabilistic Approach. Mathematical Finance 6, 365–378.
Haug, E. 1998. Complete Guide to Option Pricing Formula. McGraw Hill.
Haug, E.G. 2001. Closed form Valuation of American Barrier Options. International Journal of Theoretical and Applied Finance. Vol. 4, 355-340.
Heynen, R., H. Kat. 1996. Discrete Partial Barrier Options with a Moving Barrier. Journal of Financial Engineering 5, 199-209.
John, F. 1982. Partial Differential Equation, 4th ed. Springer-Verlag, New York.
Kamrad, B., P. Ritchken. 1991. Multinomial Approximating Models for Options with k-State Variables. Management Science 37, No. 12, 1640-1652.
Kolkiewicz, A.W. 1997. Pricing and hedging more general double barrier options. Working Paper.
Kuan, G., N. Webber, 2003. Valuing Continuous Barrier Options on a Lattice solution for a Stochastic Dirichlet Problem. Working paper.
Kunitomo, N., M. Ikeda. 1992. Pricing options with curved boundaries. Mathematical Finance 2, 275-298.
Merton, R.C. 1973. Theory of Rational Option Pricing. Bell Journal of Economics and Management Science 4, 141-183.
Levitan, S.M. 2001. Lattice Methods for Barrier Options. University of Witwatersrand Honours Project
Ritchken, P. 1995. On Pricing Barrier Options. Journal of Derivatives 3, 19-28.
Rubinstein, M., E. Reiner. 1991. Breaking Down the Barriers. RISK 4, 28-35.
Shen, S.Y., Andrew M. L. Wang. 2001. On Stop-Loss Strategies for Stock Investments. Applied Mathematics and Computation 119, 317-337.
Wang, Andrew M. L., S.Y. Shen, C.C. Chiu. 2001. The Pricing Model of the Reset Call Option. The Sixth Asia Pacific Management Conference-The Great Asia in 21st Century, 247-254.
Zvan, R., K.R. Vetzal, P.A. Forsyth. 2000. PDE methods for pricing barrier options. Journal of Economic Dynamics and Control 24, 1563-1590.
校內:2104-07-12公開