簡易檢索 / 詳目顯示

研究生: 黃啟生
Huang, Chi-sheng
論文名稱: 溫度及應變速率在鎳基718超合金動態剪切變形與破壞行為效應分析
Effect of Strain Rate and Temperature on the Deformation and Failure Behaviour of Inconel 718 Super Alloy under Shear Loading
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 123
中文關鍵詞: 動態剪切鎳基718超合金
外文關鍵詞: superalloy, dynamic shear, Inconel 718
相關次數: 點閱:117下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是利用霍普金森扭轉試驗機來研究鎳基718超合金受動態剪切荷載下之塑性變形與破壞行為。扭轉試片分別於溫度-150℃ 、25℃ 、300℃及應變速率1×103 s-1、1.5×103 s-1、3.2×103 s-1條件下進行剪切變形測試。藉由巨觀性質與破壞特性來探討應變與應變速率兩者於動態剪切變形下對材料塑變行為之影響與關係;並引用一構成方程式來描述鎳基718超合金於高速動態剪切行為。
    實驗結果顯示鎳基718超合金機械性質受剪應變速率、溫度及剪應變量之影響甚鉅,在固定溫度條件下,其塑流剪應力值、破壞剪應變量、加工硬化率、降伏剪強度、加工硬化係數、應變速率敏感性係數與溫度敏感性係數皆會隨著剪應變速率的提升而增加,而活化能則隨應變速率增加而減少;另外,在固定剪應變速率條件下,其塑流剪應力值、加工硬化率、降伏剪強度、加工硬化係數、應變速率敏感性係數、與溫度敏感性係數皆會隨著測試溫度的提高而下降,而破壞剪應變量與活化能則隨著溫度的提高而增加。藉由Kobayashi & Dodd模式之構成方程式能準確地描述鎳基718超合金在不同溫度及應變速率下的剪切塑變行為。而掃描式電子顯微鏡(SEM)與光學顯微鏡(OM)之破壞形貌與金相組織分析顯示,破斷面韌窩形貌隨應變速率與溫度的提高,有越來越密且深的趨勢;而破斷區域之金相組織隨溫度與應變速率的增加,其破斷面處晶粒扭曲更加劇烈,且塑性變形區域有越來越擴大之趨勢。

    A split-Hopkinson torsional bar system is employed to conduct a comprehensive investigation into the dynamic shear deformation behaviour and fracture characteristics of Inconel 718 superalloy. The investigations commence by examining the mechanical response of the alloy under shear strain rates of 1×103 s-1, 1.5×103 s-1and 3.2×103 s-1, respectively, at temperatures of -150℃, 25℃ and 300℃.
    The experimental results indicate that the shear strain, shear strain rate and temperature all have a significant influence on the mechanical properties of Inconel 718 superalloy. For a constant temperature, the flow shear stress, fracture shear strain, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity and temperature sensitivity all increase with increasing strain rate, while the activation energy decreases. Conversely, for a constant strain rate, the flow shear stress, work hardening rate, yielding shear strength, work hardening coefficient, strain rate sensitivity, temperature sensitivity all decrease with increasing temperature, while the fracture shear strain and activation energy increase. The fracture surfaces are characterized by a dimple-like structure, which is indicative of a ductile failure mode. The appearance and density of these dimples are strongly related to the applied strain rate and temperature conditions. Optical microscopy observations reveal that grain structure of the fracture surfaces are twisted most severely. It is found that the high strain rate shear plastic behaviour of Inconel 718 superalloy can be accurately predicted using the Kobayashi and Dodd constitutive equation.

    中文摘要 I ABSTRACT II 誌 謝 III 總目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XV 第一章 前言 1 第二章 理論與文獻回顧 3 2-1 合金組成元素及作用 3 2-2 合金組織及影響 4 2-3 合金強化機構及理論 7 2-3-1 γ〞、γ′ 析出硬化 7 2-3-2 基地固溶強化 7 2-3-3 晶界析出強化 7 2-4 塑性變形之機械測試類別 8 2-5 一維扭轉波傳理論 9 2-6 霍普金森扭轉試驗機原理 12 2-7 材料塑性變形行為之特性 14 2-8 材料變形構成方程式 17 第三章 實驗方法與步驟 29 3-1試件製作 29 3-2 實驗儀器設備 30 3-2-1 霍普金森扭轉試驗機 30 3-2-2 訊號處理裝置 31 3-2-3 掃描式電子顯微鏡 (SEM) 31 3-2-4 光學顯微鏡 (OM) 32 3-3 實驗方法與步驟 32 3-3-1 動態扭轉試驗 32 3-3-2 破斷面之觀察 (SEM) 33 3-3-3 試件金相之觀察 (OM) 33 第四章 扭轉實驗結果與討論 40 4-1 剪應力-剪應變曲線之討論 40 4-2 加工硬化率的探討 41 4-3 應變速率效應 44 4-4 溫度效應 45 4-5 活化能與熱活化體積 47 4-6 理論溫升量 49 4-7 材料變形構成方程式 51 4-8微觀分析 52 4-8-1 破壞形貌觀察 (SEM) 52 4-8-1-1破斷面形貌之觀察 52 4-8-1-2 試件破壞形貌之觀察 52 4-8-2 金相組織觀察 (OM) 53 第五章 結論 96 參考文獻 98

    1. G. A. Osinkolu , "Fatigue Crack Growth in Polycrystalline IN718 Superalloys" , Materials Science and Engineering , pp.425-433 , 2003.
    2. C.P. Sullovan , "Some Effect of Microstructure on the Mechanical Properties of Nickel Base Superalloys" , Source Book on Materials for Elevated-Temperature Applications ASM , pp.250-259 , 1979.
    3. G. Appa Rao , "Effect of Standard Heat Treatment on the Microstructure and Mechanical Properties of Hot Isostatically Pressed Superalloy inconel 718" , Materials Science and Engineering , pp.114-125, 2003.
    4. M.K. Miller , "Intragranular Precipitation in Alloy 718" , Material Science and Engineering , pp.14-18, 1998.
    5. Saied Azadian , "Delta Phase Precipitation in Inconel 718" , Material Characterization , pp.7-16, 2004.
    6. Paul J. Diconza , "Homogenization and Thermomechanical Processing of Cast Alloy 718" , TMS , Warrendale, pp.161-171, 1991.
    7. J. F. Barker , "Long Time Stability of Inconel 718" , J. of Metals , 1 , pp.31-41 , 1970.
    8. J. F. Barker , " A superalloy for Medium Temperature" , Metal Process , 5 , pp.72-75, 1962.
    9. A. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, pp. 129-167, 1981.
    10. ASM Handbook Committee, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
    11. U. S. Lindholm and L. W. Yeakly, "High Strain Rate Testing: Tension and Compression," Experimental Mechanics, Vol. 3, pp. 81-88, 1983.
    12. A. Meyers, Dynamic Behavior of Materials, A Wiley-Interscience Publication, pp. 23-65, 1994.
    13. D. Klahn, A. K. Mukherjee and J. E. Dorn, "Proceedings of the 2nd International Conference on the Strength of Metals and Alloys," Vol. III, ASM, pp. 951, 1970.
    14. J. D. Campbell, "Dynamic Plasticity: Macroscopic and Microscopic Aspects," Materials Science and Science Engineering, Vol. 12, pp. 3-21, 1973.
    15. J. D. Campbell and W. G. Ferguson, "The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel," Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
    16. A. M. Eleiche and J. D. Campbell, "Strain-Rate Effects During Reverse Torsional Shear," Experimental Mechanics, Vol. 16, pp. 281-290, 1976.
    17. Harding and J. Huddart, "The Use of the Double-Notch Shear Test in Determining the Mechanical Properties of Uranium at Very High Rates of Strain," Proc. 2nd Conf. Mechanical Properties of Materials at High Rates of Strain, Inst. Physics, pp. 49-61, 1980.
    18. A. Seeger, "The Generation of Lattice Defects by Moving Dislocations, and its Application to the Temperature Dependence of the Flow-Stress of FCC Crystals," The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
    19. U. S. Lindholm and L. M. Yeakly, "Dynamic Deformation of Single and Polycrystalline Aluminum," Journal of Mechanics and Physics of Solids, Vol. 13, pp. 41-49, 1965.
    20. H. Conrad, "Thermally Activated Deformation of Metals," Journal of Metals, pp. 582-588, 1964.
    21. W. G. Ferguson, A. Kumar and J. E. Dorn, "Dislocation Damping in Aluminum at High Strain Rates," Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
    22. J. D. Campbell and A. R. Dowling, "The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading," Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
    23. J. Harding, "The Effect of High Strain Rate on Material Properties," Materials at High Strain Rate on Material Properties, pp. 133-186, 1987.
    24. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
    25. J. D. Campbell, A. M. Eleiche, and M. C. C. Tsao, Fundamental Aspects of Structural Alloy Design, Plenum Publishing Corp. New York, pp. 545-563, 1977.
    26. R. W. Klopp, R. J. Clifton and T. G. Shawki, "Pressure Shear Impact and Dynamic Viscoplastic Response of Metals," Mechanics of Materials, Vol. 4, pp. 375-385, 1985.
    27. F. J. Zerilli and R. W. Armstrong, "Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations," Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
    28. F. J. Zerilli and R. W. Armstrong, "Constitutive Equation for HCP Metals and High Strength Alloy Steels," in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
    29. H. Kobayashi and B. Dodd, "A Numerical Analysis for the Formation of Adiabatic Shear Bands Including Void Nucleation and Growth," International Journal of Impact Engineering, Vol. 8, pp. 1-13, 1989.
    30. A. S. Khan and H. Zhang, "Mechanically Alloyed Nanocrystalline Iron and Copper Mixture: Behavior and Constitutive Modeling over a Wide Range of Strain Rates," International Journal of Plasticity, Vol. 16, pp. 1477-1492, 2000.
    31. R. Liang and A. S. Khan, "A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals over a Wide Range of Strain Rates and Temperatures," International Journal of Plasticity, Vol. 15, pp. 963-980, 1999.
    32. R. E. Reed-Hill, C. V. Iswaran and M. J. Kaufman, "A power law model for the flow stress and strain-rate sensitivity in CP titanium," Scripta Metallurgica et Materialia, v 33, n 1, Jul 1, 1995, pp. 157-162.
    33. W. S. Lee, C. Y. Liu, "Comparison of dynamic compressive flow behavior of mild and medium steels over wide temperature range," Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, v 36, n 11, November, 2005, pp. 3175-3186.
    34. B. Q. Han, E. J. Lavernia and F. A. Mohamed, "Mechanical Behavior of a Cryomilled Near-Nanostructured Al-Mg-Sc Alloy," Metallurgical and Materials Transactions A, Vol. 36A, pp. 345-355, 2005.
    35. R. Kapoor and S. Nemat-Nasser, "Determination of Temperature Rise during High Strain Rate Deformation," Mechanics of Materials, Vol. 27, pp. 1-12, 1998.
    36. H. Kolsky, "An Investingaation of The Mechanical Properties of Materials at Very High Rates of Loading", Proceedings of the Physical Society, Vol.62. pp. 676-699, 1949.
    37. B. M. Butcher and C. H, Karnes, "Strain Rate Effects In Metals", Journal of Applied Physics, Vol. 37. pp. 402-411, 1964.
    38. F. E. Hauser, "Techniques for Measuring Stress-Strain Relations at High Strain Rates", Experimental Mechanics, Vol. 6, pp. 395-402, 1966.
    39. Y. Leroy and M. Ortiz, In Mechanical Properties of Materials at High Rate Of Strain, (ed. J. Harding), pp. 257-265, 1989.
    40. D. J. Steinberg, S. G. Cochran and N. W. Guinan, "A Constitutive Model for Metals Applicable at High Strain Rate", Journal of Applied Physics, Vol. 51, No.3, pp. 1498-1504, 1980.
    41. Ludwik and Z. Vereins Deut. Ing., 71, pp. 1532-1538, 1927.
    42. L. Shi and D. O. Northwood, "The Mechanical Behavior of an AISI Type 310 Stainless Steel," Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
    43. E. Bayraktar and S. Altintas, "Some Problems in Steel Sheet Forming Processes", J. Mat. Process. Technol., Vol. 80-81, pp. 83-89, 1998.
    44. H. Andersson, c. Persson and T. Hansson, “Crack groeth in IN718 at high temperature” , Int. J. Fatigue, 23, pp. 817-827, 2001.
    45. T.S. Byun and K. Farrell, “Tensile properties of Inconel 718 after low temperature neutron irradiation”, J. Ncul. Mater., 318, pp. 292-299, 2003.
    46. JM Zhang, ZY Gao, JY Zhuang, ZY Zhong, P Janschek, “Strain-rate hardening behavior of superalloy IN718” , Journal of Materials Processing Technology, 70, pp. 252-257, 1997.
    47. CF Miller, GW Simmons, RP Wei, " Mechanism for oxygen enhanced crack growth in inconel 718”, Scripta Materialia, 44, pp. 2405-2410, 2001.
    48. Han Xue, , Wu Lijun, Xia Hui, Liu Runguang, Wang Shaogang and Chen Zhonglin, “Superplastic properties of Inconel 718”, Journal of Materials Processing Technology, 137, pp. 17-20, 2003.

    下載圖示 校內:立即公開
    校外:2009-07-07公開
    QR CODE