| 研究生: |
多亞立 Aris Purwanto |
|---|---|
| 論文名稱: |
微米級鐵顆粒在甲烷/空氣預混火焰之微爆現象研究 Study of Microexplosion Mechanism of Iron Microparticles in Premixed Methane/Air Flames |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 金屬燃燒 、鐵顆粒 、氧化鐵 、顆粒微爆炸 、混合火焰 |
| 外文關鍵詞: | metal combustion, iron particles, iron oxide, particles micro-explosion, hybrid flames |
| 相關次數: | 點閱:100 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬顆粒高體積能量密度的特性,有利於添加至固體推進劑中以增加整體能量輸出,或在燃煤爐中用金屬顆粒代替煤粉;相較於氣態碳氫化合物火焰,金屬混合火焰具有更高的能量、更高的火焰溫度。本研究旨在探討鐵混合燃燒粒徑對金屬顆粒微爆炸的潛在影響。本實驗使用四種不同的粒徑:2-10μm、50μm、100μm和150μm。預混錐形甲烷-空氣火焰在固定化學計量的條件下,以不同的進料速率摻入鐵顆粒。關於顆粒微爆炸機制,則係氧化劑擴散至鐵顆粒中,並在薄殼中生成氧化鐵。然而,有限的氧在鐵顆粒表面發生異質反應,從而在鐵顆粒表面產生中間產物氧化鐵 (FeO)。氧化鐵的形成,促使鐵顆粒在燃燒過程中有閃爍和收縮的現象。隨後,本研究於實驗中添加一氧化碳 (CO),使一氧化碳穿透至氧化物殼層內部,並與殼層內之四氧化三鐵 (Fe2O3) 反應。四氧化三鐵將產生氣泡,並促成五羰基鐵 (Fe(CO)5)的形成。在氣泡凝聚過程中,鐵顆粒會逐漸膨脹,終將形成空心的球形顆粒。然而,在某些特殊條件下,五羰基鐵可能會引起鐵顆粒的微爆炸。
Metal particles have a high volumetric energy density, making them attractive to add into solid propellants for increasing overall energy output or replace coal powder with metal particles in the coal-fired furnace. Compared to gaseous hydrocarbon flame, a metal hybrid flame has higher energy and even has a higher flame temperature. In this study, we explored the micro-explosion mechanisms of iron particles in methane-air premixed flames Four different particle sizes were used in this experiment, that is 2-10μm, 50μm, 100μm, and 150μm. A conical methane-air premixed flame was fixed in stoichiometric condition and doped with iron particles at various feeding rates. Regarding the mechanism of the micro-explosion of iron particles, the oxidizer diffuses into iron particles and produces iron oxide in a thin shell. However, limited oxygen heterogeneously reacts over the surface of the iron particles and produces Fe3O4. Fe3O4 comprises FeO and Fe2O3. Fe2O3 is a stable and rigid oxide; however, when CO react Fe3O4, this reaction makes Fe3O4 redox into fresh Fe particles, and when the Fe dominating react with O2 it will lead into FeO. The presence of FeO leads to iron particle blinking and shrinking immediately after these particles have passed the flame front. And when CO was dominate the reaction, it will lead to aforementioned reaction results in the formation of Fe(CO)5 gas bubbles CO, N2, and O2 bubbles. During the agglomeration of the bubbles, the iron particles expand gradually and eventually become hollow spherical particles. However, under special conditions, this condition will induce the micro-explosion of the iron particles.
REFERENCE
[1] W. A. Trzciński and L. Maiz, "Thermobaric and Enhanced Blast Explosives - Properties and Testing Methods," Propellants, Explosives, Pyrotechnics, vol. 40, pp. 632-644, 2015.
[2] H. M. Cassel, Some Fundamental Aspects of Dust Flames: Bureau of Mines, 1976.
[3] S. T. Aruna and A. S. Mukasyan, "Combustion synthesis and nanomaterials," Current Opinion in Solid State and Materials Science, vol. 12, pp. 44-50, 2008.
[4] R. Lomba, S. Bernard, P. Gillard, C. Mounaïm-Rousselle, F. Halter, C. Chauveau, et al., "Comparison of Combustion Characteristics of Magnesium and Aluminum Powders," Combustion Science and Technology, vol. 188, pp. 1857-1877, 2016.
[5] R. A. Yetter, G. A. Risha, and S. F. Son, "Metal particle combustion and nanotechnology," Proceedings of the Combustion Institute, vol. 32, pp. 1819-1838, 2009.
[6] D. S. Sundaram, V. Yang, T. L. Connell, G. A. Risha, and R. A. Yetter, "Flame propagation of nano/micron-sized aluminum particles and ice (ALICE) mixtures," Proceedings of the Combustion Institute, vol. 34, pp. 2221-2228, 2013.
[7] T. L. C. Grant A. Risha, Jr., Richard A. Yetter, Vigor Yang, Tyler D. Wood, Mark A. Pfeil, Timothee L. Pourpoin6, Steven F. Son, "Aluminum-Ice (ALICE) Propellants for Hydrogen Generation and Propulsion," presented at the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 2 - 5 August 2009, Denver, Colorado, 2009.
[8] T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, "Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant," International Journal of Aerospace Engineering, vol. 2012, pp. 1-11, 2012.
[9] D. B. Beach, A. J. Rondinone, B. G. Sumpter, S. D. Labinov, and R. K. Richards, "Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier," Journal of Energy Resources Technology, vol. 129, pp. 29-32, 2007.
[10] J. M. Bergthorson, S. Goroshin, M. J. Soo, P. Julien, J. Palecka, D. L. Frost, et al., "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, vol. 160, pp. 368-382, 2015.
[11] J. M. Bergthorson, Y. Yavor, J. Palecka, W. Georges, M. Soo, J. Vickery, et al., "Metal-water combustion for clean propulsion and power generation," Applied Energy, vol. 186, pp. 13-27, 2017.
[12] P. Julien, S. Whiteley, S. Goroshin, M. J. Soo, D. L. Frost, and J. M. Bergthorson, "Flame structure and particle-combustion regimes in premixed methane–iron–air suspensions," Proceedings of the Combustion Institute, vol. 35, pp. 2431-2438, 2015.
[13] I. Glassman, Combustion, 1996.
[14] H. D. Ross, Microgravity Combustion: Fire in Free Fall, 2001.
[15] J. M. Bergthorson, "Recyclable metal fuels for clean and compact zero-carbon power," Progress in Energy and Combustion Science, vol. 68, pp. 169-196, 2018.
[16] L. P. Yarin. and G. Hetsroni, Combustion of Two-Phase Reactive Media Springer, 2004.
[17] K. L. Cashdollar, "Flammability of Metals and Other Elemental Dust Clouds," Process Safety Progress, vol. 13, 1994.
[18] J. Sato and T. Hirano, "Fire spread along structural metal pieces in oxygen," Journal of Loss Prevention in the Process Industries, vol. 6, 1993.
[19] J.-H. Sun, R. Dobashi, and T. Hirano, "Combustion Behavior of Iron Particles Suspended In Air," Combustion Science and Technology, vol. 150, pp. 99-114, 2000.
[20] T. Hirano, K. Sato, Y. Sato, and J. I. Sato, "Prediction of Metal Fire Spread in High-Pressure Oxygen," Combustion Science and Technology, vol. 32, pp. 137-159, 1983.
[21] E. R. Wainwright, S. V. Lakshman, A. F. T. Leong, A. H. Kinsey, J. D. Gibbins, S. Q. Arlington, et al., "Viewing internal bubbling and microexplosions in combusting metal particles via x-ray phase-contrast imaging," Combustion and Flame, vol. 199, pp. 194-203, 2019.
[22] E. R. Wainwright, T. A. Schmauss, S. Vummidi Lakshman, K. R. Overdeep, and T. P. Weihs, "Observations during Al:Zr composite particle combustion in varied gas environments," Combustion and Flame, vol. 196, pp. 487-499, 2018.
[23] C. Badiola and E. L. Dreizin, "Combustion of micron-sized particles of titanium and zirconium," Proceedings of the Combustion Institute, vol. 34, pp. 2237-2243, 2013.
[24] J. Yu, X. Zhang, Q. Zhang, L. Wang, K. Ji, L. Peng, et al., "Combustion behaviors and flame microstructures of micro-and nano-titanium dust explosions," Fuel, vol. 181, pp. 785-792, 2016.
[25] S. Li, D. Sanned, J. Huang, E. Berrocal, W. Cai, M. Aldén, et al., "Stereoscopic high-speed imaging of iron microexplosions and nanoparticle-release," Optics Express, vol. 29, p. 34465, 2021.
[26] J. Huang, S. Li, D. Sanned, L. Xu, S. Xu, Q. Wang, et al., "A detailed study on the micro-explosion of burning iron particles in hot oxidizing environments," Combustion and Flame, p. 111755, 2021.
[27] N. I. Poletaev and M. Y. Khlebnikova, "Combustion of Iron Particles Suspension in Laminar Premixed and Diffusion Flames," Combustion Science and Technology, pp. 1-22, 2020.
[28] Y. H. Li, S. Pangestu, A. Purwanto, and C. T. Chen, "Synergetic combustion behavior of aluminum and coal addition in hybrid iron-methane-air premixed flame," Combustion and Flame, vol. 228, pp. 364-374, 2021.
[29] E. L. Dreizin, "Effect of Phase Changes on Metal-Particle Combustion Processes," Combustion, Explosion, and Shock Waves, vol. 39, 2003.
[30] E. L. Dreizin, "Phase changes in metal combustion," Progress in Energy and Combustion Science, vol. 26, 2000.
[31] E. L. Dreizin and M. Schoenitz, "Mechanochemically prepared reactive and energetic materials: a review," Journal of Materials Science, vol. 52, pp. 11789-11809, 2017.
[32] G.-B. Chen, Y.-H. Li, C.-H. Lan, H.-T. Lin, and Y.-C. Chao, "Micro-explosion and burning characteristics of a single droplet of pyrolytic oil from castor seeds," Applied Thermal Engineering, vol. 114, pp. 1053-1063, 2017.
[33] J. X. J. Shinjo, L. C. Ganippa, and A. Megaritis, "Physics of puffing and microexplosion of emulsion fuel droplets," Physic of Fluid, 2014.
[34] Y. Aly, M. Schoenitz, and E. L. Dreizin, "Ignition and combustion of mechanically alloyed Al–Mg powders with customized particle sizes," Combustion and Flame, vol. 160, pp. 835-842, 2013.
[35] P. Garra, G. Leyssens, O. Allgaier, C. Schönnenbeck, V. Tschamber, J.-F. Brilhac, et al., "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, vol. 189, pp. 578-587, 2017.
[36] K.-L. Chintersingh, Y. Sun, M. Schoenitz, and E. L. Dreizin, "Heterogeneous reaction kinetics for oxidation and combustion of boron," Thermochimica Acta, vol. 682, 2019.
[37] X. Liu, M. Schoenitz, and E. L. Dreizin, "Preparation, ignition, and combustion of magnesium-calcium iodate reactive nanocomposite powders," Chemical Engineering Journal, vol. 359, pp. 955-962, 2019.
[38] E. N. Lysenko, A. P. Surzhikov, S. P. Zhuravkov, V. A. Vlasov, A. V. Pustovalov, and N. A. Yavorovsky, "The oxidation kinetics study of ultrafine iron powders by thermogravimetric analysis," Journal of Thermal Analysis and Calorimetry, vol. 115, pp. 1447-1452, 2013.
[39] E. R. Monazam, R. W. Breault, and R. Siriwardane, "Kinetics of Magnetite (Fe3O4) Oxidation to Hematite (Fe2O3) in Air for Chemical Looping Combustion," Industrial & Engineering Chemistry Research, vol. 53, pp. 13320-13328, 2014.
[40] Y. Qu, Y. Yang, Z. Zou, C. Zeilstra, K. Meijer, and R. Boom, "Thermal Decomposition Behaviour of Fine Iron Ore Particles," ISIJ International, vol. 54, pp. 2196-2205, 2014.
[41] W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, and W. Maniukiewicz, "Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres," Applied Catalysis A: General, vol. 326, pp. 17-27, 2007.
[42] P. Tóth, Y. Ögren, A. Sepman, P. Gren, and H. Wiinikka, "Combustion behavior of pulverized sponge iron as a recyclable electrofuel," Powder Technology, vol. 373, pp. 210-219, 2020.
[43] Y. Li, R. J. FRUEHAN, and G. R. BELTON, "The Chemical Diffusivity of Oxygen in Liquid Iron Oxide and a Calcium Ferrite," Metallurgical and Materials Transactions B, vol. 31B, 2000.
[44] B. Monaghan and P. Quested, "Thermal Diffusivity of Iron at High Temperature in Both the Liquid and Solid States," ISIJ International, vol. 41, 2001.
[45] J. C. Wang, J. Ren, H. C. Yao, L. Zhang, J. S. Wang, S. Q. Zang, et al., "Synergistic photocatalysis of Cr(VI) reduction and 4-Chlorophenol degradation over hydroxylated alpha-Fe2O3 under visible light irradiation," Journal of Hazardous Materials, vol. 311, pp. 11-9, Jul 5 2016.
[46] NIST. (2000, 15 July). NIST X-ray Photoelectron Spectroscopy Database.
[47] J. B. West and H. Brodia, "Chemiluminescence and Photoluminescence of Diatomic Iron Oxide," The Journal of Chemical Physics vol. 62, 1975.
[48] A. Corcoran, S. Mercati, H. Nie, M. Milani, L. Montorsi, and E. L. Dreizin, "Combustion of fine aluminum and magnesium powders in water," Combustion and Flame, vol. 160, pp. 2242-2250, 2013.
[49] M. Nanjaiah, A. Pilipodi-Best, M. R. Lalanne, P. Fjodorow, C. Schulz, S. Cheskis, et al., "Experimental and numerical investigation of iron-doped flames: FeO formation and impact on flame temperature," Proceedings of the Combustion Institute, vol. 38, pp. 1249-1257, 2021.
[50] I. Wlokas, A. Faccinetto, B. Tribalet, C. Schulz, and A. Kempf, "Mechanism of Iron Oxide Formation from Iron Pentacarbonyl-Doped Low-Pressure Hydrogen/Oxygen Flames," International Journal of Chemical Kinetics, vol. 45, pp. 487-498, 2013.
[51] M. D. Rumminger, D. Reinelt, V. Babushok, And G. T. Linteris, "Numerical Study of the Inhibition of Premixed and Diffusion Flames by Iron Pentacarbonyl," Combustion and Flame, 1999.
[52] M. W. Chase, "NIST–JANAF Thermochemical Tables for the Iodine Oxides," Journal of Physical and Chemical Reference Data, vol. 25, pp. 1297-1340, 1996.