| 研究生: |
彭勳章 Peng, Hsiun-Chang |
|---|---|
| 論文名稱: |
從澆注到凝固之鑄造過程的可變時間步伐數值分析 Numerical Modeling of Casting Process from Mold Filling to Solidification by a Modified Truncation-Error-Based Adaptive Time Stepping Control Strategy |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 鑄造 、凝固 、可變時間步伐 、截尾誤差 |
| 外文關鍵詞: | casting, solidification, adaptive time step, truncation error |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可變時間步伐方法在數值上可提供以一具效率、高精確度之方式模擬各種暫態問題,然而如何預測適當的時間步伐而有效對凝固過程之暫態特徵進行模式化分析具高困難度,一些常用的可變步伐方法如Backward Euler (BE) 法、Crank-Nicolson (CN) 法及Gresho-Lee-Sani (GLS) 法等,做為時間差分技術配合等效比熱法之模式計算時,均無法有效掌握相變中之潛熱釋放,以致無法獲得具精確效率的模擬結果。
因此,本研究提出以一修正局部時間結尾誤差 (LTE) 為基礎的調步方法,其可在完整凝固過程中整合相變潛熱、純液相及純固相變化預測所需之時間步伐大小,如此潛熱釋放效應可精確地被模式化符合能量守恆,所計算的溫度場結果的準確性亦隨之增進。本研究透過模擬一維與二維典型具不同相變特性及不同邊界條件的凝固熱傳問題,比較各種可變時間步伐方法(含所提出方法)與固定時間步伐方法所計算結果之準確度與效率,相關問題之收斂性分析本文亦有所討論,另透過配合熱焓法之模式計算,其結果進一步確認所提方法對凝固過程進行模式模擬之可行性。
當所提出之方法成功應用於非線性凝固過程時,本研究亦應用類似觀念處理其他具非連續性表面特徵之連續暫態自由液面流之相關問題,如水壩崩流問題與矩形模之澆注問題,透過與其他方法及文獻結果之比較,確認本法之應用彈性。最後,配合其他流場、自由液面、溫度場及凝固模式之設定,在時間計算與求值上,本研究利用此法模擬分析從澆注階段到凝固結束之完整鑄造過程。
Adaptive time step methods provide a computationally efficient means of simulating transient problems with a high degree of numerical accuracy. However, choosing appropriate time steps to model the transient characteristics of solidification processes is difficult. As time discretization techniques, several commonly applied adaptive time step methods, such as Backward Euler (BE) method, Crank-Nicolson (CN) method and Gresho-Lee-Sani (GLS) strategy, fail to bring an accurate and efficient result while the apparent heat capacity method is applied to model the latent heat effects associated with phase change.
The current study develops a modified local time truncation error (LTE)-based strategy designed to adaptively adjust the size of the time step throughout the whole simulated solidification procedure in such a way that the time steps can be adapted in accordance with the local variations in latent heat released during phase change or the effects of pure conduction in a single solid or liquid phase, the effects of latent heat release are more accurately modeled and the precision of the computational solutions is correspondingly improved. The computational accuracy and efficiency of the proposed method are compared with those obtained using other adaptive and uniform time step methods and demonstrated via the simulation of several one-dimensional and two-dimensional classical thermal problems characterized by different phase change phenomena and boundary conditions. Convergence analyses are also discussed. The feasibility of the proposed method for the modeling of solidification processes is further verified via its applications to the enthalpy method.
Since the proposed scheme is successfully applied to non-linear solidification processes, the similar concept is also applied to other continuous transient free-surface flow problems with surface indicator of discontinuous characteristics, such as the broken dam problem and the filling process of a rectangular mold, ensuring the application flexibility for the proposed scheme. Furthermore, a complete casting problem from the filling stage to the end of solidification is modeled using the proposed adaptive time step method.
[1] Kurz W., Fisher D. J., Fundamentals of solidification, Trans Tech Publications, Switzerland, 1998.
[2] Chalmers B., Principles of solidification, Wiley, New York, 1964.
[3] Lame G., Clapeyron B. P. E., Memoire sur la solidification par refroidissment d’un globe sloid, Annalen der Physik and Chemie 47 (1831) 250-260.
[4] Stefan J., Über einige Probleme der Theorie der Wärmeleitung, S. B. Kais. Akad. Wiss. Wien. 28 (1889) 473-484.
[5] Stefan J., Über die Theorie der Eisbildung, insbesondere über die Eisbildung in Polarmaere, Annalen der Physik and Chemie 42 (1891) 269-286.
[6] Crank J., Free and moving boundary problems, Clarendon press, Oxford, 1984.
[7] Hu H., Argyropoulos S. A., Mathematical modeling of solidification and melting: a review, Modelling and Simulation in Materials Science and Engineering 4 (1996) 371-396.
[8] Voller V. R., An overview of numerical methods for solving phase change problems, Advance in Numerical Heat Transfer 1 (1997) 341-380.
[9] Lewis R. W., Ravindran K., Finite element simulation of metal casting, International Journal for Numerical Methods in Engineering 47 (2000) 29-59.
[10] Murray W. D., Landis F., Numerical and machine solutions of transient heat conduction problems involving freezing and melting, Journal of Heat Transfer-Transactions of the ASME 81 (1959) 106-112.
[11] Ciment M., Guenther R. B., Numerical solution of a free boundary value problem for parabolic equations, Applicable Analysis 4 (1974) 39-62.
[12] Ciment M., Sweet R. A., Mesh refinement for parabolic equations, Journal of Computational Physics 12 (1973) 513-525.
[13] Rubinsky B., Cravahlo E. G., A finite element method for the solution of one-dimensional phase change problems, International Journal of Heat and Mass Transfer 24 (1981) 1987-1989.
[14] Askar H. G., The front-tracking scheme for the one-dimensional freezing problem, International Journal for Numerical Methods in Engineering 24 (1987) 859-869.
[15] Dalhuijsen A. J., Segal A., Comparison of finite element techniques for solidification problems, International Journal for Numerical Methods in Engineering 23 (1986) 1807-1829.
[16] Poirier D., Salcudean M., On numerical methods used in mathematical modeling of phase change in liquid metals, Journal of Heat Transfer-Transactions of the ASME 110 (1988) 562-570.
[17] Voller V. R., Swaminathan C. R., Fixed grid techniques for phase change problems: a review, International Journal for Numerical Methods in Engineering 30 (1990) 875-898.
[18] Tamma K. K., Namburu R. R., Recent advances, trends and new perspectives via enthalpy-based finite element formulations for applications to solidification problems, International Journal for Numerical Methods in Engineering 30 (1990) 803-820.
[19] Ouyang T., Tamma K. K., Finite element simulations involving simultaneous multiple interface fronts in phase change problems, International Journal of Heat and Mass Transfer 39 (1996) 1711-1718.
[20] Namburu R. R., Tamma K. K., Effective modeling/analysis of isothermal phase change problems with emphasis on representative enthalpy architectures and finite elements, International Journal of Heat and Mass Transfer 36 (1993) 4493-4497.
[21] Morgan K., Lewis R. W., Zienkiewicz O. C., An improved algorithm for heat conduction problems with phase change, International Journal for Numerical Methods in Engineering 12 (1978) 1191-1195.
[22] Comini G., Guidice S., Lewis R. W., Zienkiewicz O. C, Finite element solution of non-linear heat conduction problems with special reference to phase change, International Journal for Numerical Methods in Engineering 8 (1974) 613-624.
[23] Lemmon E. C., Numerical methods in heat transfer, Wiley, New York, 1981.
[24] Crivelli L. A., Idelsohn S. R., A temperature based finite element solution for phase-change problems, International Journal for Numerical Methods in Engineering, 23 (1986) 99-119.
[25] Storti M., Crivelli L. A., Idelsohn S. R., Making curved interfaces straight in phase-change problems, International Journal for Numerical Methods in Engineering 24 (1987) 375-392.
[26] Voller V., Cross M., An explicit numerical method to track a moving phase change front, International Journal of Heat and Mass Transfer 26 (1983), 147-150.
[27] Bell G. E., Wood, A. S., On the performance of the enthalpy method in the region of a singularity, International Journal for Numerical Methods in Engineering 19 (1983) 1583-1592.
[28] Tacke K. H., Discretization of the explicit enthalpy method for planar phase change, International Journal for Numerical Methods in Engineering, 21 (1985) 543-554.
[29] Hunter J. W., Kuttler J. R., The enthalpy method for heat conduction problems with moving boundaries, Journal of Heat Transfer 111 (1989) 239–42.
[30] Cao Y., Faghri A., Chang, W. S., A numerical analysis of Stefan problems for generalized multi-dimensional phase change structures using the enthalpy transforming model, International Journal of Heat and Mass Transfer 32 (1989) 1289-1298.
[31] Rolph W. D., Bathe. K. J., An efficient algorithm for analysis of nonlinear heat transfer with phase changes, International Journal for Numerical Methods in Engineering 8 (1982) 119-134.
[32] Roose J., Storrer O., Modelization of phase changes by fictitious heat flow, International Journal for Numerical Methods in Engineering, 20 (1984) 217-225.
[33] Salcudean M., Abdullah Z., On the numerical modeling of heat transfer during solidification processes, International Journal for Numerical Methods in Engineering 28 (1988) 445-473.
[34] Voller V. R., Swaminathan C. R., General sourced-based method for solidification phase change, Numerical Heat Transfer B 19 (1991) 175-189.
[35] Hong C. P., Umeda T., Kimura Y., Numerical models for casting solidification: part I, the coupling of the boundary element and finite difference methods for solidification problems, Metallurgical Transactions B 15 (1984) 91-99.
[36] Tszeng T. C., Im Y. T., Kobayashi S., Thermal analysis of solidification by the temperature recovery method, International Journal of Machining Tools in Manufacture 29 (1989) 107-120.
[37] Chen Y. H., Im Y. T., Lee Z. H., Three dimensional finite element analysis with phase change by temperature recovery method, International Journal of Machining Tools in Manufacture. 31 (1991) 1-7.
[38] Im Y. T., Chen Y. H., Lee J. K., Lee Z. H., A comparative study of finite element solutions of solidification by temperature recovery method, AFS Transactions 99 (1991) 299-304.
[39] Pham Q. T., A fast, unconditionally stable finite-difference scheme for heat conduction with phase change, International Journal of Heat and Mass Transfer 28 (1985) 2079-2084.
[40] Date A. W., A strong enthalpy formulation for the Stefan problem, International Journal of Heat and Mass Transfer 34 (1991) 2231-2235.
[41] Swaminathan C. R., Voller V. R., A general enthalpy method for modeling solidification processes, Metallurgical Transactions B 23B (1992) 651-664.
[42] Giudice S. D., Comini G., Lewis R. W., Finite element simulation of freezing processes in soils, International Journal for Numerical and Analytical Methods in Geomechanics 2 (1978) 223-235.
[43] Voller V., Cross M., Accurate solutions of moving boundary problems using the enthalpy method, International Journal of Heat and Mass Transfer 24 (1981) 545-556.
[44] Lees M., A linear three-level difference scheme for quasilinear parabolic equation, Mathematics of Computation 20 (1966) 516-522.
[45] Comini G. and Lewis R.W., A numerical solution of two-dimensional problems involving heat and mass transfer, International Journal of Heat and Mass Transfer 19 (1976) 1387-1392.
[46] Tavakoli R., Davami P., Unconditionally stable fully explicit finite difference solution of solidification problems, Metallurgical and Materials Transactions B 38B (2007) 121-142.
[47] Patankar S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.
[48] Gaskell P. H., Jimack P. K., Sellier M., Thompson H. M., Efficient and accurate time adaptive multigrid simulations of droplet spreading, International Journal for Numerical Methods in Fluids 45 (2004) 1161-1186.
[49] Kavetski D., Binning P., Sloan S. W., Adaptive backward Euler time stepping with truncation error control for numerical modeling of unsaturated fluid flow, International Journal for Numerical Methods in Engineering 53 (2002) 1301-1322.
[50] Kavetski D., Binning P., Sloan S. W., Adaptive time stepping and error control in a mass conservative numerical solution of mixed form of Richards equation, Advances in Water Resources 24 (2001) 595-605.
[51] Crouzet N., Turinsky P. J., A second-derivative-based adaptive time-step method for spatial kinetics calculation, Nuclear Science Engineering 123 (1996) 206-214.
[52] Chen K., Baines M. J., Sweby P. K., On an adaptive time stepping strategy for solving nonlinear diffusion equations, Journal of Computational Physics 150 (1993) 324-332.
[53] Dantzig J. A., Modeling liquid-solid phase changes with melt convection, International Journal for Numerical Methods in Engineering 28 (1989) 1769-1785.
[54] Douglas J., Gallie T. M., On the numerical integration of a parabolic differential equation subject to a moving boundary condition, Duke Mathematical Journal 22 (1955) 557-571.
[55] Goodling J. S., Khader M. S., Inward solidification with radiation-convection boundary condition, Journal of Heat Transfer-Transactions of the ASME 96 (1974) 114-115.
[56] Gupta R. S., Kumar D., A modified variable time step method for one-dimensional Stefan problem, Computer Methods in Applied Mechanics and Engineering 23 (1980) 101-109.
[57] Gupta R. S., Kumar D., Variable time step methods for one-dimensional Stefan problem with mixed boundary condition, International Journal of Heat and Mass Transfer 24 (1981) 251-259.
[58] Ouyang T., Tamma K. K., On adaptive time stepping approaches for thermal solidification processes, International Journal of Numerical Methods for Heat and Fluid Flow 6 (1996) 37-50.
[59] Gresho P. M., Lee R. L., Sani R. L., On the time dependent solution of the incompressible Navier-Stokes equations in two and three dimensions, Recent Advance in Numerical Methods in Fluids, Pineridge Press, Swansea, 1980.
[60] FIDAP Theory Manual, Fluent Inc, New Hampshire, 1998.
[61] Chao L. S., Peng H. C., Adaptive time stepping strategy for solidification processes based on modified local time truncation error, International Journal for Numerical Methods in Engineering 79 (2009) 1245-1263.
[62] Peng H. C., Chao L. S., A modified truncation error-based adaptive time-step control strategy for fully and semi-implicit simulation of isothermal solidification processes, International Journal of Thermal Sciences 48 (2009) 1517–1522.
[63] Peng H. C., Chao L. S., An adaptive time-step control strategy for the solidification processes based on modified local time truncation error, Materials Transactions 49 (2008) 2597-2604.
[64] Ho S. L., Fu W. N., Application of automatic choice of step size for time stepping finite element method to induction motors, IEEE Transactions on Magnetics 33 (1997) 1370-1373.
[65] Georgiev K., Kosturski N., Margenov S., Stary J., On adaptive time stepping for large-scale parabolic problems: computer simulation of heat and mass transfer in vacuum freeze-drying, Journal of Computational and Applied Mathematics 226 (2009) 268-274.
[66] Lozinski A., Picasso M., Prachittham V., An anisotropic error estimator for the Crank-Nicolson method: application to a parabolic problem, Siam Journal on Scientific Computing 31 (2009) 2757-2783.
[67] Kakatsios X. K., Krikkis R. N., Effect of surface tension and evaporation on phase change of fuel droplets, Heat Transfer Engineering 22 (2001) 33-40.
[68] Tremblay J. C., Carrington T. Jr., Using preconditioned adaptive step size Runge-Kutta methods for solving the time-dependent Schrödinger equation, Journal of Chemical Physics 121 (2004) 11535-11541.
[69] Tsitouras Ch., Runge-Kutta interpolants for high precision computations, Numerical Algorithms 44 (2007) 291–307.
[70] Britz D., Osterby O., Strutwolf J., Damping of Crank-Nicolson error oscillations, Computational Biology and Chemistry 27 (2003) 253-263.
[71] Wood W. L., Control of Crank-Nicolson noise in the numerical solution of the heat conduction equation, International Journal for Numerical Methods in Engineering 11 (1977) 1059-1065.
[72] Nicholson D. W., On stable numerical integration methods of maximum time Step, ACTA Mechanica 38 (1981) 191-198.
[73] Zhao A. P., The influence of the time step on the numerical dispersion error of an unconditionally stable 3-D ADI-FDTD method: a simple and unified approach to determine the maximum allowable time step required by a desired numerical dispersion accuracy, Microwave and Optical Technology Letters 35 (2002) 60-65.
[74] Wingate B. A., The maximum allowable time step for the shallow water model and its relation to time-implicit differencing, Monthly Weather Review 132 (2004) 2719-2731.
[75] Joosten M. M., Dettmer W. G., Peric´ D., Analysis of the block Gauss–Seidel solution procedure for a strongly coupled model problem with reference to fluid–structure interaction, International Journal for Numerical Methods in Engineering 78 (2009) 757-778.
[76] Carslaw H. S., Jaeger J. C., Conduction of Heat in Solids, Oxford University Press, Oxford, 1959.
[77] Rathjen K. A., Jiji L. M., Heat conduction with melting or freezing in a corner, Journal of Heat Transfer-Transactions of the ASME 93 (1971) 101-109.
[78] Nichols B. D., Hirt C. W., Hotchkiss R. S., SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries (LA-8355), Los Alamos Scientific Laboratory, New Mexico, 1980.
[79] Lee J., Mok J., Hong C. P., Straightforward numerical analysis of casting process in a rectangular mold: from filling to solidification, ISIJ international 39 (1999) 1252-1261.
[80] Harlow F. H., Welch J. E., Numerical calculation of time-dependant viscous incompressible flow of fluid with free surface, Physics of Fluids 8 (1965) 2182-2189.
[81] Hirt C. W., Nichols B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201-225.
[82] Van Leer B., Towards the ultimate conservative difference scheme IV: a new approach to numerical convection, Journal of Computational Physics 23 (1977) 276-299.
[83] Thomas J. W., Numerical Partial Differential Equations: Finite Difference Methods, Springer-Verlag, New York, 1995.
[84] Ames W. F., Numerical Methods for Partial Differential Equations, Academic Press, New York, 1977.
[85] Mei Y., Mohan R. V., Tamma K. K., Evaluation and applicability of a new explicit time integral methodology for transient thermal problems-finite volume formulations, Numerical Heat Transfer B-Fundamental, 26 (1994) 313-333.
[86] Yoo J., Rubinsky B., A finite element method for the study of solidification processes in the presence of natural convection, International Journal for Numerical Methods in Engineering 23 (1986) 1785-1805.
[87] Nasch P. M., Steinemann S. G., Density and thermal expansion of molten manganese, iron, nickel, copper, aluminum and tin by means of the gamma-ray attenuation technique, Physics and Chemistry of Liquids 29 (1995) 43-58.
[88] Chen Y., Im Y. T., Yoo J., Finite element analysis of solidification of aluminum with natural convection, Journal of Materials Processing Technology 52 (1995) 592-609.
[89] Usmani A. S., Lewis R. W., Seetharamu K. N., Finite element modeling of natural-convection-controlled change of phase, International Journal for Numerical Methods in Fluids 14 (1992) 1019-1036.