簡易檢索 / 詳目顯示

研究生: 吳凱邦
Wu, Kai-Bang
論文名稱: 電漿頻率下之模轉換的非線性理論
Nonlinear Theory of Mode Conversion at Plasma Frequency
指導教授: 許正餘
Hsu, Jang-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 42
中文關鍵詞: 模轉換渦流滯留磁場高頻波密度氣泡
外文關鍵詞: Mode Conversion, Vorticity, DC Magnetic Field, High Harmonic Wave Generation, Density Bubble
相關次數: 點閱:147下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於電磁波而言,在非均勻電漿體中,模轉換的過程是重要的能
    量吸收機制之一。電磁波會在模轉換層經由模轉換過程轉移能量給靜
    電波,靜電波在截止層則因緩慢的群速度使得震幅增大。非線性模轉
    換理論的統御方程式精確到二階,其滯留流場與滯留磁場是共生共滅
    的。靜電波放大了模耦合的效應產生電場之旋度的滯留分量,驅動渦
    流而得到滯流磁場。我們利用有限時域差分法模擬出在雷射光的強度
    為O(10^19 ) watt / cm^2情形下,滯留磁場強度可達幾百個百萬高
    斯。高頻波可由模耦合機制產生,並穿透至高密度區域。靜電波改變
    了電子在平衡狀態時的密度,產生密度氣泡區域,離子則藉由庫
    侖爆炸加速至幾百萬個電子伏特的能量。該能量足以擊碎慣性約束核
    融合靶材並產生核融合反應。

    Mode conversion process is an important energy absorption mechanism of the electromagnetic waves in an inhomogeneous plasma. An electromagnetic (EM) wave at the mode conversion layer transfers its energy to the electrostatic (ES) wave whose amplitude can be greatly enhanced due to its slow group velocity and the nearby cut off layer. The mode conversion efficiency reaches up to 50%~60% at a proper incident angle. The governing equations are accurate to the second order in the nonlinear theory of mode conversion. The localized flow and DC magnetic field are synonymous. The ES wave enhances mode coupling to produce DC component of the curl of the electric field that drives vorticity to yield DC magnetic field. No DC magnetic field exists if ES wave is absent. Our finite difference time domain simulation shows that the DC magnetic field is about hundreds of mega-gauss at O(10^19 ) watt / cm^2 laser power. High harmonic waves are generated by the nonlinear mode-mode coupling mechanism which can penetrate into the high density region. The ES wave modulates electron equilibrium density to produce electron density bubble and ions can be accelerated to MeVs through Coulomb explosion enough to fragment laser fusion pellet target but can also yield fusion process.

    Abstract………………………………………………………………………………..1 摘要…………………………………………………………………………………2 Chapter 1 Introduction………………………………………………………………3 1.1 Fusion Process………………………………………………………………..3 1.2 Mode Conversion…………………………………………………………….5 1.3 Coulomb Explosion…………………………………………………………..6 1.4 DC Magnetic Fields…………………………………………………………..7 1.5 High harmonic Wave Generation…………………………………………….8 Chapter 2 Governing Equations and Green’s Function………………….10 2.1 Nonlinear Equations in Mode Conversion………………………………….10 2.2 Green’s Function Method…………………………………………………...13 Chapter 3 Linear Mode Conversion……………………………………………….18 3.1 Dispersion Relations and Conditions to Mode Conversion……...18 3.2 Mode Conversion Process…………………………………………………..20 3.3 Mode Conversion Efficiency………………………………………………..23 Chapter 4 Nonlinear Theory of Mode Conversion at Plasma Frequency………25 4.1 Localized Flow Field and DC Magnetic Field…………………………….25 4.2 High Harmonic Generation…………………………………………………38 4.3 Density Bubble and Coulomb Explosion…………………………………...39 Chapter 5 Summary and Conclusions……………………………………………..40 References…………………………………………………………………………...42

    [1] E.I. Moses, http://arxiv.org/abs/physics/0111063.
    [2] https://lasers.llnl.gov/programs/nic/icf/how_icf_works.php
    [3]Principles of Fusion Energy, edited by A. A. Harms, K. F. Schoepf, G. H. Miley and D. R. Kingdon(World Scientific, Singapore, 2000), P189
    [4] http://www.coppermask.com/fusion/FusionS5/s5-blank.html
    [5] T. Stix, Phys. Rev. Lett. 15, 878 (1965).
    [6] Zheng-Ming Sheng, Kunioki Mima, et al., Phys. Rev. Lett., 94, 095003 (2005)
    [7] J. Y. Hsu, Phys. Plasma, 17, 032104, 2010;J.Y. Hsu, Computer Physics Communications, (2010), doi 10.1016/j.cpc
    [8]http://www.physik.tu-berlin.de/cluster/researchFEL.html
    [9] S. Sakabe, S. Shimizu, M. Hashida, et al., Phys. Rev. A 69, 023203 (2004)
    [10] T. Ditmire, J. Zweiback, V. P. Yanovsky, T. E. Cowan, G. Hays, and K. B.Wharton, Nature (London)398 489 (1999)
    [11] J. Zweiback, et al. Phys.Rev. Lett. 85, 3640 (2000)
    [12] J.A. Stamper, K. Papadopoulos, et al., Phys. Rev. Lett. 26, 1012 (1972)
    [13] S.C.Wilks, W. L. Kruer, et al., Phys.Rev.Lett.69,1383(1992)
    [14] R.N.Sudan, Phys.Rev.Lett.70,3075(1993)
    [15] V.K. Tripathi and C.S. Liu, Phys. Plasma 1, 990 (1994)
    [16] L.Gorbunov, P.Mora and Thomas M. Antonsen, Jr., Phys.Rev.Lett.76,2495(1996)
    [17] M. Tatarakis, A. Gopal, et al. Phys. Plasma 9, 2244 (2002)
    [18] U. Wagner, M. Tataratis, et al., Phys. Rev. E 70, 026401 (2004)
    [19] N. H. Burnett, H. A. Baldis, M. C. Richardson, and G. D.Enright, Appl. Phys. Lett. 31, 172 (1977)
    [20] B. Bezzerides, R. D. Jones, and D. W. Forslund, Phys.Rev. Lett. 49, 202 (1982)
    [21] P. Gibbon, Phys. Rev. Lett. 76, 50 (1996).
    [22] T. Baeva, S. Gordienko, and A. Pukhov, Phys. Rev. E 74, 046404 (2006)
    [23] Kane Yee, IEEE Transactions on Antennas and Propagation, 14, 302 (1966)
    [24] Mathematical Methods for Physics and Engineering, edited by K. F. Riley, M. P. Hobson and S. J. Bence(Cambridge University Press, United Kingdom, 1998), P412~413
    [25] Mathematical Methods for Physicists, edited by Arfken and Weber(Academic Press, USA, Fifth Edition)

    下載圖示 校內:2011-02-21公開
    校外:2011-02-21公開
    QR CODE