簡易檢索 / 詳目顯示

研究生: 姜致傑
Chiang, Chih-Chieh
論文名稱: 健康人體胸主動脈內暫態流場探討
Investigation of Pulsatile Flowfield in a Healthy Thoracic Aorta Model
指導教授: 溫志湧
Wen, Chih-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 血流動力因素流固耦合脈波傳導速度胸主動脈
外文關鍵詞: Hemodynamics, Fluid structure interaction, Pulse wave velocity, Thoracic aorta
相關次數: 點閱:131下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動脈剝離(Aortic dissection)和動脈粥樣硬化(atherosclerosis)為常見高致死率的心臟疾病,形成這些病變的關鍵因素係因主動脈內複雜的血流動力因素(hemodynamics)對血管壁面所產生的壓力與異常剪應力所引起的,所以了解心血管的循環系統內流場的分布情形為重要的課題。本研究藉由核磁共振影像(Phase-Contrast Magnetic Resonance Imaging, PC-MRI),獲得一般正常人的主動脈弓外型,並利用數篇相關的文獻作為計算的邊界條件,再利用計算流體力學軟體ACE+®基於三維、暫態、不可壓縮牛頓流體以及流固耦合模型進行理論分析。再將求解所得的血流動力因素如壁面剪應力(Wall Shear stress, WSS)、壓力、血流脈波傳導速度(Pulse Wave Velocity, PWV)以及壁面剪應力震盪值(Oscillatory WSS Index, OSI)與上述主動脈的疾病做討論,並且與尚未加入流固耦合模型的結果做比較。預測的結果顯示主動脈剝離以及動脈粥樣硬化的發展成因與壁面剪應力的最大值和最小值的位置有關聯。除此之外,亦發現考慮流固耦合之後的結果使得壁面剪應力比尚未加入流固耦合模型的結果在幾個特殊的時間點下有明顯下降的趨勢。最後我們將用在PC-MRI計算血流脈波傳導速度的技術應用在CFD的結果上,此為一新的應用方法,並可以間接證明本研究模型的壁面順應性與真實人體相符。

    Aortic dissection and atherosclerosis are highly fatal diseases. Complicated hemodynamics is closely related to the development of aortic dissection and atherosclerosis; therefore, it is important to better understand the flowfield in the cardiovascular circulatory system of a human body. In this research, the test model was imitated from the true geometry of a normal human thoracic aorta scanned by the phase-contrast magnetic resonance imaging (PC-MRI) technique. The interaction of blood flow with vessel wall dynamics in a thoracic aorta model was studied using a coupled fluid-structure analysis built in the computational fluid dynamic (CFD) code ACE+® to determine flow characteristics of the three-dimensional, pulsatile, incompressible and Newtonian fluid in the thoracic aorta. The distributions of wall shear stress (WSS) and oscillatory WSS index (OSI) were resolved to examine their connections to the aortic disorders. The predictions indicate the preferential development of the early aortic dissection and atherosclerosis in the areas of either maxima or minima of WSS, which may properly lead to a useful biological significance. In consistency with similar findings reported in previous studies, the numerical results suggest that simulations which consider the fluid structure interaction (FSI) effect can predict relatively lower WSSs linking with deformation of the vessel wall in some particular times during a cardiac cycle. Instead of implementing a typical PC-MRI technique to measure the aortic pulse wave velocity (PWV), we also presented an innovative application of using the FSI approach to resolve the PWV for assessment of wall compliance in a thoracic aorta model.

    封面內頁 簽名頁 中文摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.2.1 心血管模擬與實驗 4 1.2.2 脈波傳導速度 8 1.3 研究目的 10 第二章 研究方法 11 2.1胸主動脈模型 11 2.2 統御方程式&數值方法 13 2.3 邊界條件 19 第三章 結果與討論 21 3.1理論模型 21 3.2網格解析 22 3.3 理論模型分析與驗證 23 3.4心臟脈動週期內流場探討 25 3.5心臟脈動週期脈波傳導速度探討 38 第四章 結論 44 參考文獻 46 附錄 52

    [1]. 行政院衛生署網站:http://www.doh.gov.tw/statistic/index.htm ,民國九十七年。
    [2]. Debakey, M. E., McCollum, C. H., Crawford, E. S., Howell, J., Noon G. P., Lawrie G. L., “Dissection and Dissecting Aneurysms of the Aorta: Twenty-one Year Follow-up of 527 Patients Treated Surgically,” Surg 92:1118-1134, 1982.
    [3]. Erbel R., Delert H., Meyer J., “Effect of Medical and Surgical Therapy on Aortic Dissection Evaluated by Transesophageal Echocardiography : Implications for Progonosis and Therapy. Circulation.” 87:1604-1615, 1993.
    [4]. Keren, A., Kim, C B., Hu, B S., “Accuracy of Biplane and Multiplane Transesophageal Echocardiography in Diagnosis of Typical Acute Aortic Dissection Intramural Hematoma.” J. AmColl Cardiol. 28:627-636, 1996.
    [5]. Sahs, A L., “Observations on the Pathology of Saccular Aneurysms.” J. Neurosurg. 24:79-806, 1996.
    [6]. 陳宏ㄧ等,心臟血管外科學,合計圖書出版社,民國九十三年。
    [7]. Joseph S. Alpert, 馮鈞瀚編譯,簡明心臟學,合記圖書出版社,民國九十年。
    [8]. Dale, J R., Pape, L A., Cohn, L H., “Dissection of the Aorta Pathogenesis, Diagnosis, and Treatment,” J. Prog Cardiovasc Dix. 23:237-242, 1980.
    [9]. Barakat, A.I., Karino, T.,Colton, C. K., “Microcinematographic Studies of the Flow Field in the Excised Rabbit Aorta and its Major Branches, ” Journal of Biomechanics.31:217-228, 1997.
    [10]. Perktold, K., Hofer, M., Rappitsch, G., Loew, M., Kuban, B. D., Friedman, M. H., “Validated Computation of Physiologic Flow in a Realistic Coronary Artery Branch,” Journal of Biomechanics. 31: 217– 228, 1998.
    [11]. Gijsen, F. J. H., Allanic, E., Vosse, F. N. van de., Janssen, J. D., “The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90° Curved Tube,” Journal of Biomechanics. 32:705-713, 1999.
    [12]. Hugo G., Bogren, MD, PhD, and Michael H. Buonocore, MD, PhD, “4D Magnetic Resonance Velocity Mapping of Blood Flow Patterns in the Aorta in Young vs. Elderly Normal Subjects.” Journal of Magnetic Resonance Imaging. 10:861-869, 1999.
    [13]. Zabielski, L. and Mestel, A. J., “Helical Flow Around Arterial Bendes for Varying Bond Mass.” Journal of Biomechanical Engineering. Vol. 122, April, 2000.
    [14]. Zhao, S. Z., Xu, X. Y., Hughes, A. D., Thom, S. A., Stanton, A. V., Ariff, B., Long, Q., “Blood flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation,” Journal of Biomechanics. 33:975-984, 2000.
    [15]. Shahcheraghi, N., Dwyer, H. A., Cheer, A. Y., Barakat, A. I., Rutaganira, T., “Unsteady and Three-Dimensional Simulation of Blood Flow in the Human Aortic Arch,” Journal of Biomechanical Engineering. Vol. 124, 378-387, 2002.
    [16]. Buchanana, J. R., Kleinstreuera, C., Hyunb, S., Truskey, G. A., “Hemodynamics Simulation and Identification of Susceptible Sites of Atherosclerotic Lesion Formation in a Model Abdominal Aorta.” Journal of Biomechanics. 36:1185–1196, 2003.
    [17]. Jin, S., Oshinski, J., Giddens, D. P., “Effects of wall motion and compliance on flow patterns in the ascending aorta,” ASME J. Biomech. Eng 125:347-354, 2003.
    [18]. Nakamura, M., Wada, S., Yamaguchi, T., “Computational analysis of blood flow in an integrated model of the left ventricle and the aorta,” ASME J. Biomech. Eng 128:837-843, 2006.
    [19]. 丁大為,吳秉勳。植入枝架造成血管內壁呈皺摺狀變形後之血液動力及非牛頓流體效應分析。第十一屆全國計算流體力學學術研討會。中華民國九十三年八月。
    [20]. 丁大為,林柏宏。於人體生理條件下左冠狀動脈之幾何形狀變化對其壁面剪應力分布之影響。行政院國家科學委員會專題研究計畫成果報告書。NSC91-2213-E-014-008。執行期限 91/08/01~92/07/31。
    [21]. 劉通敏,丁大為,陳禹銘。顱內彎形母管與其上側向動脈瘤之脈動流場特性數值模擬。第十一屆全國計算流體力學學術研討會。中華民國九十三年八月。
    [22]. 牛仰堯,伍邦銓,虞希禹,曾文毅,彭旭霞,李隆政,鄭守成。人體主動脈之磁振造影良策與數值模擬。第十一屆全國計算流體力學學術研討會。中華民國九十三年八月。
    [23]. 李明龍,周朝宜,李隆政,沈澄宇,施仁傑,林錫慶。冠狀動脈繞道血管之三維數值模擬。第十一屆全國計算流體力學學術研討會。中華民國九十三年八月。
    [24]. Yang, A. S., Wen, C. Y., Tseng, L. Y., “In vitro characterization of aortic flow using numerical simulation, phase-contrast magnetic resonance imaging, and particle tracking images,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 222(12):2455-2462, 2008.
    [25]. Wen, C. Y., Yang, A. S., Tseng, L. Y., Chai, J. W., “Investigation of pulsatile flowfield in healthy thoracic aorta models,” Annals of Biomedical Engineering 38:391-402, 2010.
    [26]. Yu, H. Y., Peng, H. H., Wang, J. L., Wen, C. Y., Tseng, W. Y. I., “Quantification of the Pulse Wave Velocity of the Descending Aorta Using Axial Velocity Profiles From Phase-Contrast Magnetic Resonance Imaging,” Magnetic Resonance in Medicine 56:876-883, 2006.
    [27]. Whitmore, R. L., “Rheology of the Circulation,” Oxford: Pergamon Press. 1968.
    [28]. Yearwood, T. L., “Steady and pulsatile flow analysis in a model of the human aortic arch,” Ph.D. thesis, Tulane University, New Orleans, 1979.
    [29]. Fung, Y. C., “Biomechanics. Mechanical Properties of Living Tissues,” New York: Springer, 1981.
    [30]. Van-Doormaal, J. P., Raithby, G. D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transfer 7:147-163, 1984.
    [31]. Riley, W. A., Barnes, R. W., Evans, G. W., Burke, G. L., “Ultrasonic measurements of the elastic modulus of the common carotid artery: the Atherosclerosis Risk in Communities (ARIC) Study,” Stroke 23:952-956, 1992.
    [32]. Gao, F., Watanabe, M., Matsuzawa, T., “Stress analysis in a layered aortic arch model under pulsatile blood flow,” Biomed. Eng. Online 5:25, 2006.
    [33]. Di Martino, E. S., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P., Redaelli, A., “Fluid-structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm,” Med. Eng. Phys 23:647–655, 2001.
    [34]. Yearwood, T. L., Chandran, K. B., “Physiological pulsatile flow experiments in model of the human aortic arch,” J Biomechanics 15:683-704, 1982.
    [35]. Huang, R. F., Yang, T. F., Lan, Y. K., “Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches,” Exp Fluids 48:497-508, 2010.
    [36]. Avolio, A. P., “Multi-branched model of the human arterial system,” Med. & Biol. Eng. & Comput 18:709-718, 1980.
    [37]. Kim, Y. H., Kim, J. E., Ito, Y., Shih, A. M., Brott, B., Anayiotos., “A Hemodynamic Analysis of a Compliant Femoral Artery Bifurcation Model using a Fluid Structure Interaction Framework,” Annals of Biomedical Engineering 36:1753-1763, 2008.
    [38]. Kilner, P. J., Yang, G. Z., Mohiaddin, R. H., Firmin, D. N., Longmore, D. B., “Helical and retrograde secondary flow Investigation of Pulsatile Flowfield in Healthy Thoracic Aorta Models patterns in the aortic arch studied by three-dimensional magnetic resonance velocity mapping,” Circulation 88:2235-2247, 1993.
    [39]. Liepsch, D., Moravec, S. T., Baumgart, R., “Some flow visualization and laser-Doppler velocity measurements in a tube-to-scale elastic model of a human arotic arch—a new model technique,” Biorheology 29:563-580, 1992.
    [40]. Taylor, C. A., Cheng, C. P., Espinosa, L. A., Tang, B.T., Parker, D., Herfkens, R. J., “In vivo quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise,” Ann. Biomed. Eng. 30:402-408, 2002.
    [41]. Malek, A. M., Alper, S. L., Izumo, S., “Hemodynamic shear stress and its role in atherosclerosis,” J. Am. Med. Assoc. 282:2035-2042, 1999.
    [42]. Roberts, W. C., “Aortic dissection: anatomy consequences and causes,” Am. Heart J. 101:195-214, 1981.
    [43]. Svensson, L. G., Grawford, E. S., “Aortic dissection and aortic aneurysm surgery: clinical observations, experimental investigations, and statistical analyses,” Part II. Curr. Probl. Surg. 29:913-1057, 1992.
    [44]. Shaaban, A. M., Duerinckx, A. J., “Wall shear stress and early atherosclerosis: a review,” American Journal of Roentgenology 174:1657-1665, 2000.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE