簡易檢索 / 詳目顯示

研究生: 許詠聖
Hsu, Yung-Shen
論文名稱: 雙量子點在聲子共振腔的非馬可夫程度
Non-Markovianity of a double-dot qubit in a suspended phonon cavity
指導教授: 陳岳男
Chen, Yue-Nan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 33
中文關鍵詞: 非馬可夫程度雙量子點
外文關鍵詞: Non-Markovianity, double-dot qubit
相關次數: 點閱:64下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文中,我們探討雙量子點系統在聲子共振腔的非馬可夫程度。我們發現由電聲交互作用所產生的相消干效應在這個系統裡扮演重要的角色。此效應使得在量子對中的資訊在環境中流散。藉著改變量子點之間的距離以及共振腔的厚度,我們可以改變系統的非馬可夫性質,我們也發現相消干係數與系統的非馬可夫程度有強烈的關係。

    In this thesis, we investigate non-Markovianity of a double-dot qubit in a suspended phonon cavity. Pure dephasing due to the electron-phonon interaction plays an important role in the system. It leads information lose from qubit to the environment. By changing distance between dots and thickness of slab, the non-Markovianity varies. We also find the non-Markovianity can be strongly related to the dephasing factor.

    1 Introduction ..........1 2 Model and Methodology........5 2.1 Qubit in Slabs.........5 2.1.1 Quantum dot and Free-Standing Quantum Well . . . .5 2.1.2 Solve and Con ned the Eigenmode . . . . . . . . . .6 2.1.3 Dephasing of Single Qubit . . . . . . . . . . . .10 2.2 The Measurement of Non-Markovianity . . . . . . . 18 2.2.1 Markovianity . . . . . . . . . . . . . . . . . 18 2.2.2 Trace-Distance . . . . . . . . . . . . . . . . 18 2.2.3 Measure Degree of Non-Markovian Behavior . . . 19 2.3 Discussion and Conclusion . . . . . . . . . . . .22 2.3.1 Non-Makovianity for QFSW . . . . . . . . . . . 22 2.3.2 Discussion for Non-Markovianity with Dephasing Factor in Systems . . . . . . . . . . . . . . . . . 29 2.3.3 Conclusion for Non-Markovianity in Systems . . .31 Reference.... 33

    [1] N. Banno, V. Mitin, and Stoscio, phys. stat. sol. (b) 183, 131(1994).
    [2] B. A .Auld, Acoustic eld and waves in solid (Wiley, New York, (1973).
    [3] Y. Yamamoto, F Tassone, and H. Cao Semiconductor cavity quantum electrodynamics.
    (Berlin, Springer, 2000).
    [4] T. Fujisawa, T. H. Oosterkamp , W. G van der Wiel, B. W. Broer, R. Aguado,
    S. Tarucha, and L. P. Kouwenhoben, Science 282, 932 (1998).
    [5] Wojciech H. Zurek, Los Alamos Science, 27 (2002)
    [6] T. Fujisawa, and S. Tarucha, Supperlatt. Microstr. 21, 247(1997).
    [7] T. Brandes, The Dicket e ect in Electronic Systems (2000).
    [8] William K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
    [9] N. Bannov, V. Aristov, and V. Mitin, Phys. Rev. B 51, 15 (1995).
    [10] V. N. Stavrou and Xuedong Hu, Phys. Rev. B 72, 075362 (2005).
    [11] Y. Y. Liao, and Y. N. Chen, Phys. Rev. B 81, 153301 (2010).
    [12] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo, Phy. Lett 103,
    210401(2009).
    [13] Bassano Vacchini, Andrea Smirne, Elsi-Mari Laine, Jyrki Piilo and Heinz-
    Peter Breuer, New J. Phys. 13, 093004 (2011) Springer

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE