簡易檢索 / 詳目顯示

研究生: 邱元升
Chiu, Yuen-Sheng
論文名稱: 車用輪胎之動態滾動接觸行為與胎紋排水性研究
A Study of the Dynamic Rolling Contact Behavior and Tread Pattern on Hydroplaning for Commercial Automotive Tires
指導教授: 鄭泗滄
Jenq, Syh-Tsang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 191
中文關鍵詞: 複合材料水漂現象(Hydroplaning)暫態碰撞有限元素分析滾動與接觸分析輪胎排水性路面凸角橡膠
外文關鍵詞: bump obstacle, composite, rubber, contact analysis, tires, FEM, hydroplaning, transient impact, V-shape
相關次數: 點閱:114下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之研究目的主要在於先進複材輪胎的動態滾動行為及行經路面凸角之力學響應研究,進而探討花紋對輪胎排水性現象的影響。輪胎的結構相當複雜,將輪胎結構中之複材補強層,使用古典基層板理論依據其各部分材料與角度上組成的差異,轉換成工程常數,計算出其材料性質。由於輪胎表面花紋以及胎體部份,屬於純橡膠材料,而純橡膠材料屬於大變形之非線性彈性材料,利用Mooney-Rivlin模型去描述。透過前處理建構出輪胎複雜的結構以及胎紋,使用商用有限元素軟體LS-DYNA模擬計算輪胎在乾燥路面上的滾動行為與路經凸角後輪胎所受之力學響應,並與Bridgestone公司作者Y. Nakajima等人2000年所發表之文章為參考指標,並比較其所使用的有限元素軟體Dytran,觀察輪胎所受之正向接觸反力曲線,其結果與LS-DYNA模擬之輪胎正向受力行為,能夠有相當一致的結果。除此之外,使用四種不同車速,分別為30、60、90、120km/hr使輪胎於乾燥平坦路面上滾動,觀察速度大小不同對輪胎結構與花紋的受力分佈的影響,進而與M H R Ghoreishy等人於2006年所發表之文章比較胎面花紋所受之最大接觸壓力位置,結果也能相當吻合。
    由於輪胎所受到外在之動靜態的負載相當多,經過輪胎滾動的數值驗證後,本文選擇路面凸角(Bump)與積水路面(Water film)做更深入之探討,模擬四種花紋之輪胎,分別為MA-Z1、V型胎紋、光頭胎紋以及直排胎紋,完成充氣與滾動行為後,與路面凸角接觸,觀察輪胎速度與凸角接觸作用後,輪胎表面花紋與接觸反力的數值反應。
    運用四種花紋之輪胎,與路面積水接觸,應用EULER與ALE法,模擬輪胎在經過積水路面時,計算其複雜的流固耦合(FSI, Fluid Structure Interaction)現象。模擬後的結果可得知花紋對水漂速度(Hydroplaning Velocity)的影響,並與橫濱(YOKOHAMA)輪胎公司之數據,趨勢都能有相當一致的結果。藉由有限元素軟體的模擬,藉此能提供可靠的數據去判斷輪胎的力學行為,且能透過本文之模擬成果能有效減少工程人員所花的實驗與時間成本,為本文主要之研究目的。

    The purpose of this work is to study the rolling contact response of inflated pneumatic radial tires with a quarter vertical car weight loaded initially. Tires were designed to roll over a specific 9 mm height bump obstacle on a dry roadway at a prescribed incident speed. The dynamic interactive response between the road bump and tire are examined numerically. Tire structure contains the rubber tread and reinforcing composite layers (i.e., the inner layer, carcass, steel belt, bead filler and bead wires). The Mooney-Rivlin constitute law was adopted to describe the large deformation and non-linear behavior of rubber material. The classical laminated theory was used to model the mechanical response for the reinforcing composite layers. In the present study, the 235/45/R17 radial tires with four tread patterns, i.e. the smooth pattern, V-shape grove pattern, longitudinal grove pattern, and the MAXXIS VICTRA MA-Z1 sport tire pattern, were chosen to study the dynamic contact rolling response when tires roll over the bump obstacle on a dry pavement. Finite Element Commercial Codes – LS-DYNA and Dytran were used to simulate the smooth pattern tire’s rolling response on a flat dry roadway explicitly in order to compare the transient solutions obtained from both FEM commercial codes. It reveals that both LS-DYNA and Dytran simulated normal contact forces for the tire with blank tread pattern rolling on a dry roadway were found to be very close to each other. In addition, the MA-Z1’s contact lateral force, which is an indication of the stability for rolling tires, were also calculated using LS-DYNA code and the results resemble closely with those reported by Ghoreishy (2006). Current LS-DYNA tire models for four tread patterns mentioned above were then used to simulate the complete process of the tire rolling over a prescribed bump obstacle. It is noted that tires were numerically inflated to 240 kPa and loaded with a quarter car weight initially, and the tires were then accelerated from rest on a dry-flat pavement up to velocities of 30, 60, 90 and 120 km/hr. The tires were then in contact with a prescribed 9 mm height road bump. In addition, we also concern with hydroplaning problem. The hydroplaning phenomenon was simulated by EULER and ALE formulations, and the transient relationship of the Fluid-Structure Interaction (FSI) for prescribed tread patterns was computed by LS-DYNA explicit solver. The numerical results correspond well to the paper data edited by Toshihiko Okano and Masataka Koishi. The simulated tire deformation pattern, local Von-Mises stress, the lateral contact force and the normal contact force of the above mentioned tires with four tread patterns rolling over bump and water film were obtained and reported. Detailed simulated results were also reported.

    簽名頁 授權書 全文中文摘要 全文英文摘要 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 1-3 研究目的 3 1-4 文獻回顧 4 1-4-1 靜態 4 1-4-2 動態滾動接觸行為 5 1-4-3 動態排水性現象行為 6 1-5 輪胎結構組成與術語介紹 9 1-6 研究方法與論文大綱 11 1-7 論文架構流程圖 15 第二章 理論背景與分析方法 19 2-1 橡膠之超彈性理論 19 2-2 簾布層之材料組成與座標規劃 21 2-2-1 簾布層規劃區 24 2-2-2 單層等效混合定律 (Rule of Mixtures) 25 2-2-3 古典積層板理論 26 2-3 流固耦合(FSI)之分析方法簡介 29 2-3-1 Eulerian (Eul)分析方法 30 2-3-2 Arbitrary Lagrangian Eulerian (ALE) 分析方法 30 2-4 IMPLICIT 與 EXPLICIT METHOD 31 2-4-1 Implicit數值方法之理論介紹 31 2-4-2 Explicit數值方法之理論介紹 36 2-4-3 LS-DYNA中Implicit與Explicit的使用技巧 37 第三章 輪胎結構及花紋、路面凸角與積水路面之有限元素模型 44 3-1 輪胎MAXXIS MA-Z1結構與花紋之有限元素模型 44 3-1-1 花紋有限元素模型與元素選定 44 3-1-2 簾布層、胎邊與胎唇有限元素模型與元素選定 45 3-1-3 鋼圈、路面的有限元素模型建立方法與元素選定 45 3-1-4 空氣層的有限元素模型建立方法與元素選定 46 3-2 輪胎V型花紋之有限元素模型 46 3-3 輪胎光頭花紋之有限元素模型 47 3-4 輪胎直排花紋之有限元素模型 47 3-5 路面凸角之有限元素模型 47 3-6 積水路面之有限元素模型 48 第四章 複材補強層收斂性測試與MA-Z1輪胎擬靜態壓縮模擬驗證 58 4-1 複材補強層收斂性測試 58 4-1-1 使用Solid元素 58 4-1-2 使用Shell元素 59 4-1-3 結論 60 4-2 擬靜態壓縮實驗步驟與設備介紹 60 4-2-1實驗步驟與儀器介紹 60 4-3 模擬真實物理環境狀況與結果 61 4-3-1 模擬物理環境假設 61 4-3-2 擬靜態模擬結果 63 4-4 模擬數據資料驗證 64 4-4-1 接觸反力與壓縮量 64 4-4-2 輪胎截面之最大斷寬值 64 4-4-3 下壓接觸胎紋顏料 65 4-5 結果與討論 66 第五章 多種花紋輪胎之動態滾動接觸分析 85 5-1 驗證動態滾動接觸平地路面數值反應 85 5-1-1 定義輪胎尺寸、模擬環境與外加負載 86 5-1-2 與Y. NAKAJIMA(普利司通輪胎公司)資料驗證 86 5-1-3 與M. H. R. Ghoreishy資料驗證 88 5-2 定義輪胎滾動模組之運動作用時間 88 5-3 輪胎滾動之物理環境與模擬想法 89 5-4 應用動態滾動模組於乾燥平地路面之力學響應 90 5-4-1 MA-Z1、V型、光頭、直排花紋之滾動力學行為 91 5-4-5 模擬結果比較 94 5-5 應用動態滾動模組於路面凸角之力學響應 95 5-5-1 MA-Z1、V型、光頭、直排花紋之滾動力學行為 95 5-5-2 模擬結果比較 97 第六章 應用流固耦合方法於輪胎排水性現象研究 136 6-1 輪胎排水模組架構與模擬想法及物理環境 136 6-1-1 定義輪胎尺寸、模擬環境與外加負載 138 6-1-2 水與空氣中的狀態方程式(Equation of State)描述 139 6-2 與TOSHIHIKO OKANO ET AL (日本橫濱輪胎公司)資料驗證 142 6-2-1 光頭花紋、直排胎紋與水面接觸之力學行為 142 6-2-2 V型花紋與水面接觸之力學行為 144 6-2-3 模擬結果比較 146 6-3 應用排水性模組於MA-Z1花紋之力學響應 148 6-3-1 MA-Z1正轉方向與反轉方向差異性 (SMV) 148 6-3-2 MA-Z1正轉方向與反轉方向差異性 (MM) 149 6-4 結果討論與分析應用 151 第七章 結論與未來展望 180 7-1 結果與討論 180 7-2 未來展望 184 參考文獻 185 自 述 191

    [1] M H R Ghoreishy, “Steady State Rolling Analysis of a Radial Tyre:Comparison with Expermental Results” , Proceedings of the Institution of Mechanical Engineers -- Part D -- Journal of Automobile Engineering,Vol.220, No.6, pp.713-721, 2006.

    [2] J. Mc Allen, A.M. Cuitifio, V. Sernas, “Numerical investigation of the deformation characteristics and heat generation in pneumatic aircraft tires”, Finite Elements in Analysis and Design Vol. 23, pp.241-263, 1996.

    [3] Jenq, S. T., Yucheng Ting, S. M. Liang, David Lin and Mike Shih “Quasi-static Compression and Rolling Contact Analysis of MAXXIS VICTRA MA-Z1 Tire on Dry Roadway”, International Journal of Modern Physics B, Vol. 22, No. 9, pp.1531-1537, 2008.

    [4] M Shiraishi, H Yoshinaga, N Iwasaki, K Hayashi, “Making FEM Tire Model and Applying It For Durability Simulation”, 6th International LS-DYNA User Conference, pp.2-21~2-42, 2001.

    [5] Y. Nakajima, E. seta, T. Kamegawa and H. ogawa, “Hydroplaning Analysis by FEM and FVM:Effect of Tire Rolling and Tire Pattern on Hydroplaning”, International Journal of Automotive Technolngy, Vol.1, No.1, pp.26~34, 2000.

    [6] M. Shiraishi, H. Yoshinaga, A. Miyori, and E. Takahashi, “Simulation of Dynamically Rolling Tire”, Tire Science and Technology TSTCA, Vol.28, No.4, pp.264-276, 2000.

    [7] H. Grogger and M. Weiss, “Calculation of the Three-Dimensional Free Surface Flow Around an Automobile Tire”, Tire Science and Technology TSTCA, Vol.24, No.1, pp.39-49, 1996.

    [8] H. Grogger and M. Weiss, “Calculation of the Hydroplaning of a Deformable Smooth-Shaped and Longitudinally-Grooved Tire”, Tire Science and Technology TSTCA, Vol.25, No.4, pp.265-287, 1997.

    [9] Toshihiko Okano et al, “Hydroplaning Simulation using MSC.Dytran”, 2nd MSC Worldwide Automotive Conference, 2000.

    [10] H. Koshi, T. Okano, H.Saito and M. Makino, “Hydroplaning Simulation Using Fluid-Structure Interaction in LS-DYNA”, 3rd European LS-DYNA Users Conference, 2001.

    [11] C. W. Oh , T. W. Kim , H. Y. Jeong , K. S. Park and S. N. Kim, “ Hydroplaning Simulation for a Straight-Grooved Tire by using FDM, FEM and an asymptotic method” , Journal of Mechanical Science and Technology, Vol.22, pp.34-40, 2008.

    [12] Clark, Samuel K, Mechanics of Pneumatic Tires, Washington, The Supt. of Docs. , State of Govt. Print Office, 1971.

    [13] http://www.cst.com.tw 正新橡膠工業股份有限公司官方網頁

    [14] 中華民國國家標準CNS 4679 D2015 , 汽車用輪圈之輪廓, 1986.

    [15] 中華民國國家標準CNS 7135 D2087, 汽車用輕合金盤型輪圈, 1995.

    [16] Jenq, S. T. and J. J. Mo, “Ballistic impact response for two-step braided three-dimensional textile composite”, AIAA Journal, Vol.34, No.2, pp.375-384, 1996.

    [17] Jenq, S. T., J. T. Kuo and L. T. Sheu, “Ballistic impact response of 3-D four-step braided glass/epoxy composites”, Key Engineering Materials, Vol. 141-143, in Part 1: Impact Response and Dynamic Failure of Composites and Laminate Materials, pp.349-366, 1998.

    [18] 丁羽辰,“車用先進輪胎之擬靜態壓縮實驗及動態滾動反應之數值研究”,國立成功大學航空太空工程研究所碩士論文, 2006.

    [19] 愛發股份有限公司, ABAQUS實務入門引導, 全華科技圖書股份有限公司, 2005. (pp.10-49~10-52)

    [20] T. J. Chung, Continuum Mechanics, Prentice Hall, Englewood Cliffs, New Jersey, 1988. (pp.140-142)

    [21] C. Truesdell, Continuum Mechanics, Gordon and Breach, New York, 1965. (pp.379-397)

    [22] R. W. Ogden, “Recent Advances in the phenomenological theory of rubber elasticity,” Rubber Chemistry and technology, Vol.59,No.3, pp.361~382, 1986.

    [23] Guo Qiang Liu et al., “The Computer Simulation Rubber Components and Composites”, Composites Science and Technology, Vol.36, pp.267-281, 1989.

    [24] T. J. Chung, Continuum Mechanics, Prentice Hall, Englewood Cliffs, New Jersey, 1988. (pp.104-106)

    [25] Ronald F. Gibson, Principles of Composite Material Mechanics, Second Edition, Taylor & Francis Group , LLC , Boca Raton, 2007. (pp.91-107)

    [26] Herbert Reismann, Peter S. Pawlik, Elasticity Theory and Applications, John Wiley, New York, 1980. (pp.128-135)

    [27] 黃義雄, “輪胎爆胎的分析和改善” , 國立台灣大學機械工程研究所碩士論文, 1997.

    [28] 林義乾,“凝膠材料衝擊平板與飛具結構之研究”,國立成功大學航空太空工程研究所碩士論文, 2006.

    [29] J. O. Hallquist, LS-DYNA Keyword User’s Manual, Livermore, v.971, pp.2.15-2.21 (Software Technology Corp., Livermore, CA, 2007).

    [30] Ray W. Clough and Joseph Penzien, Dynamics of Structures, Second Edition, McGraw-Hill International, Inc., New York, 1993. (pp.121-127)

    [31] Germund Dahlquist et al., Numerical Method, Prentice Hall, Englewood Cliffs, New Jersey, 1974. (pp.222-223)

    [32] 勢流科技股份有限公司, 結構分析軟體LS-DYNA技術講座Implicit/Explicit, 2006. (pp.38-40)

    [33] J. O. Hallquist, LS-DYNA Keyword User’s Manual, Livermore, v.971, pp.11.36-11.38 (Software Technology Corp., Livermore, CA, 2007).

    [34] MTS Plat-trac 輪胎動態滾動試驗機, http://www.mts.com

    [35] Olovsson, L. and Souli, M., ALE and Fluid-Structure Interaction Capbility in LS-DYNA, Proceedings of 6th International LS-DYNA Users Conference, 2000.

    [36] Okano, T. and Koishi, M., “A New Computational Procedure to predict Transient Hydroplaning Performance of a Tire”, Tire Science and Technology TSTCA, Vol.29, No.1, pp.2-22, 2001.

    [37] J. O. Hallquist, LS-DYNA Keyword User’s Manual, Livermore, v.971, pp.2.9-2.12 (Software Technology Corp., Livermore, CA, 2007).

    [38] S. T. Jenq, F. B. Hsiao, I. C. Lin, D. G. Zimcik and M. Nejad Ensan, “Simulation of a rigid plate hit by a cylindrical hemi-spherical tip-ended soft impactor," Computational Materials Science, Vol.39, No.3, pp. 518-526, 2007.

    [39] Gabi Ben-Dor , Ozer Igra and Tov Elperin, Handbook of Shock Waves, Academic Press, San Diego, 2001. (pp.147~149)

    [40] J. O. Hallquist, LS-DYNA Keyword Theory Manual, Livermore, pp.20.1 (Software Technology Corp., Livermore, CA, 2006).

    [41] Kendall E. Atkinson, An Introduction to Numerical Analysis, John Wiley , New York, 1976. (pp.52-53)

    [42] James S. Wilbeck, “Impact Behavior of Low Strength Projectile”, AFML-TR-77- 134, 1978.

    [43] Stanley P. Marsh, Lasl Shock Hugoniot Data, University of California Press, University of California Berkeley, 1980. (pp.573-575)

    下載圖示 校內:2018-06-30公開
    校外:2018-06-30公開
    QR CODE