| 研究生: |
陳玉崗 Chen, Yu-Gang |
|---|---|
| 論文名稱: |
單動力源四足步行機器之設計 On the Design of A Quadruped Walking Machine with A Single Actuator |
| 指導教授: |
顏鴻森
Yan, Hong-Sen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 132 |
| 中文關鍵詞: | 單動力源 、四足步行機器 、路徑產生器 、靜態穩定 |
| 外文關鍵詞: | quadruped, walking machines, path generators, single-DOF |
| 相關次數: | 點閱:197 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究之主要目的,為提出一套系統化方法,用以設計多種單動力源驅動且能達到靜態穩定平衡行走之四足步行機器。此多種步行機器分別具有四連桿、六連桿及八連桿構型,且為單自由度之腿部機構。本文中建立了一套單動力源步行機器之設計流程,並依照各種桿件型態之腿部機構舉例,詳細敘述各流程步驟。本研究之四足步行機器之腿部機構,可由現存的路徑產生器或由創造性設計方法所獲得全新之路徑產生器發展而得。其次,所得之路徑產生器經由最佳化方法,尺寸合成出可用的足部軌跡;而腿部機構之曲柄,則是經由一種兩段轉速之方法控制,用以調整足點分別在支撐段及抬腳時之移動速度,此變轉速控制方式可增大責任因子及改善步行運動的穩定性。再者,四組腿部機構之足點位置及其相對應之曲柄位置,則依照波狀步態理論安排。根據上述原理,輔以適當齒輪組之配合傳動,即可設計而得多種型式之單自由度、單動力源之四足步行機器。
本文另外提出一套方法,針對一架四足步行機器,當其重心位置多變化時,用以分析其步行之穩定性。首先,依照步態理論歸納出整個步行過程中會產生最不穩定之四種情況,經由此四種情況所獲得之支撐邊界的交集,可得到重心分佈位置之穩定面積範圍。當步行機器行走在不同地形上時之穩定面積範圍及重心之最大安全允許高度,則可由上述平面行走時之穩定面積範圍推導而得,並建立重心分佈成金字塔形狀之穩定體積。將各種地形情況所得之安全重心之穩定體積重疊互相比較可得知,只要當重心之變化位置在此穩定體積內,則可以確保此四足步行機器運動之穩定性。本結果有助於,當重心之位置多變化時,例如當步行機器上有負載或因駕駛操控而引起的重心位置變化所導致之運動不穩定性之分析。
最後,本研究製作了一架單動力源四足步行機器原型機,以證明文中所提出之設計方法之可行性,並依照文中所提出之穩定性分析方法以分析此原型機在各種地形之穩定性。
Abstract
This research presents a systematic approach to developing various quadruped walking machines with a single degree-of-freedom (DOF) and with statically stable locomotion. A design flowchart for this approach is introduced and the steps and examples are detailed. Leg mechanisms for developing the quadruped machine can be derived either from existing path generators or from new path generators that are created by a creative mechanism design method based on required design requirements and constraints. Next, the obtained path generators are dimensionally synthesized to obtain usable foot trajectories by the optimization technique. The crank of the leg is driven by a two-speed control apparatus to adjust the moving speed of the foot point both in a support phase and a transfer phase. This variable speed control increases the value of the duty factor and improves the stability of locomotion. According to the above stated theory and with the transmission of an applicable gear train, various types of quadruped walking machines with one DOF can be developed.
In this research, a method of stability analysis for the locomotion of a quadruped walking machine with variable positions of the center of gravity (CG) is also proposed. The stability areas are obtained by taking the intersections of supporting boundaries that are constructed under various unstable conditions for walking on even and uneven terrain. The stability pyramids are built based on the stability area of level walking and the maximum safety height of the CG. The stability volumes for different terrain are superimposed for comparison. This indicates that the locomotion of a quadruped is stable when the position of the CG varies in the range of the stability volume. These results are useful for maintaining the stability of locomotion when the position of the CG varies in cases when there are payloads or pilots on board.
Finally, a prototype walking machine with 8-link type legs is constructed and it has been proven that this approach is feasible for designing various types of single-DOF legged vehicles. And, the stability analysis of the prototype is performed according to the method developed in this study.
Bibliography
1. Rygg, L. A., “Mechanical Horse,” U.S. Patent 491,927, 1893.
2. Shigley, J. E., “The Mechanics of Walking Vehicles,” Land Locomotion Laboratory Report No. LL-71, U.S. Army Tank-Automotive Command, Warren, Michigan, September 1960.
3. Mosher, R. S., “Test and Evaluation of a Versatile Walking Truck,” Proceedings of Off-Road Mobility Research Symposium, International Society for Terrain Vehicle Systems, Washington, D.C., pp. 359-379, 1968.
4. McGhee, R. B., “Finite State Control of Quadruped Locomotion,” Proceedings of Second International Symposium on External Control of Human Extremities, Dubrovnik, Yugoslavia, August 1966.
5. Kato, I. and Tsuiki, H., “Hydraulically Powered Biped Walking Machine with a High Carrying Capacity,” Proceedings of Fourth International Symposium on External Control of Human Extremities, Dubrovnik, Yugoslavia, August 1972.
6. Buckett, J. R., Design of an On-Board Electronic Joint System for a Hexapod Vehicle, M.S. thesis, The Ohio State University, Columbus, Ohio, March, 1977.
7. Okhotsimski, D. E., Gurfinkel, V. S., Devyanin, E. A., and Platonov, A. K., “Integrated Walking Robot Development,” Machine Intelligence, 9, 1977.
8. Hirose, S. and Umetani, Y., “The Basic Motion Regulation System for a Quadruped Walking Machine,” ASME Paper 80-DET-34, September 1980.
9. Hirose S. T., Masui T., and Kikuchi H., “TITAN III: A Quadruped Walking Vehicle,” Proceedings of the 2nd ISRR Symposium, Tokyo, Japan, pp. 247-253, 1984.
10. Brown, T. F. Jr., Dynamic Study of a Four-Bar Linkage Walking Machine Leg, M.S. thesis, The Ohio State University, Columbus, Ohio, Summer 1982.
11. Russell, M., “Odex I: The First Functionoid,” Robotics Age, Vol. 5, No. 5, pp. 12-18, 1983.
12. Raibert, M. H. and Sutherland, I. E., “Machines That Walk,” Scientific American, Vol. 13, No. 1, pp. 32-41, 1983.
13. Raibert, M. H., Chepponis, M., and Brown, H. B., Jr., “Running on Four Legs as Though They Were One,” IEEE Journal of Robotics and Automation, Vol. RA-2, No. 2, June 1986.
14. Lee T. T. and Shih C. L., “A Study of the Gait Control of a Quadruped Walking Vehicle”, IEEE Journal of Robotics and Automation, Vol. 2, No. 2, pp. 61-69, 1986.
15. Song, S. M., Kinematic Optimal Design of a Six-Legged Walking Machine, Ph.D. dissertation, The Ohio State University, Columbus, Ohio, 1984.
16. Song, S. M. and Waldron, K. J., Machines that Walk: the Adaptive Suspension Vehicle, The MIT Press, London, 1989.
17. Chun, W., “Design & Construction of a Quarter Scale Model of the Walking Beam,” 20th Pittsburgh Conference on Modeling and Emulation, Pittsburgh, Pennsylvania, May 5, 1989.
18. Shieh, W. B., Tsai, L. W., Azarm, S., and Tits, A. L., “Multiobjective Optimization of a Leg Mechanism with Various Spring Configurations for Force Reduction,” ASME Transactions, Journal of Mechanical Design, Vol. 118, pp. 179-185, 1996.
19. Shieh, W. B., Tsai, L. W., and Azarm, S., “Design and Optimization of a One-Degree-of-Freedom Six-Bar Leg Mechanism for a Walking Machine,” Journal of Robotic Systems, 14(12), pp. 871-880, 1997.
20. Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., and Yamazaki, K., “SCOUT: A Simple Quadruped that Walks, Climbs, and Runs,” Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Vol. 2, pp. 1707-1712, 1998.
21. Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown H. B., Jr., McMordie, D., Saranli, U., Full, R., and Koditschek, D. E., “RHex: A Biologically Inspired Hexapod Runner,” Autonomous Robots, Vol. 11, pp. 207-213, 2001.
22. Quinn, R. D., Offi, J. T., Kingsley, D. A., and Ritzmann, R. E., “Improved Mobility Through Abstracted Biological Principles,” 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 3, pp. 2652-2657, 2002.
23. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., and Fujimura, K., “The intelligent ASIMO: System overview and integration,” IEEE International Conference on Intelligent Robots and Systems, Vol. 3, pp. 2478-2483, 2002.
24. Arkin, R. C., Fujita, M., Takagi, T., and Hasegawa, R., “An ethological and emotional basis for human-robot interaction,” Robotics and Autonomous Systems, Vol. 42, No. 3-4, pp. 191-201, 2003.
25. Ikeda, K., Taguchi, K., Nozaki, T., and Matsumoto, S., “Walking Vehicle,” U.S. Patent 3,850,259, 1974.
26. Lauber, E., “Rolling and Stepping Vehicle,” U.S. Patent 4,265,326, 1981.
27. Shkolnik, N., “Walking Apparatus,” U.S. Patent 4,462,476, 1984.
28. Littman, E. J. and Anderson, U., “Prime Mover,” U.S. Patent 4,558,758, 1984.
29. Sota, J. M., “Land Vehicle with Articulated Legs,” U.S. Patent 4202,423, 1980.
30. Stewart, D. E., “Walking Vehicle,” U.S. Patent 4,662,465, 1987.
31. Shkolnik, N., “Walking Machine,” U.S. Patent 4,862,980, 1989.
32. Ferrante, T. A., “Modular Robot,” U.S. Patent 5,685,383, 1997.
33. Yan, H. S., “I am working like a horse and an oxen,”(in Chinese) Engineering (Taipei), Vol. 68, No. 10, pp. 17-25, 1995.
34. Yan, H. S., Creative Design of Mechanical Devices, Springer, Singapore, 1998.
35. Chen, P. H., On the Mechanism Design of 4-link and 6-link Types Wooden Horse Carriages, M.S. thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 1998.
36. Chiu, C. P., On the Design of a Wave Gait Walking Horse, M.S. thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 1996.
37. Hwang, K., On the Design of an Optimal 8-link Type Walking Horse, M.S. thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 1997.
38. Shen H. W., On the Mechanism Design of 8-link Type Walking Horses, M.S. thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 1999.
39. Hung C. C., On the Mechanism Design of A Hybrid 8-link Type Walking Horse, M.S. thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 2002.
40. McGhee, R. B., “Some Finite State Aspects of Legged Locomotion,” Mathematical Biosciences, Vol. 2, pp. 67-84, 1968.
41. McGhee, R. B. and Frank, A. A., “On the Stability Properties of Quadruped Creeping Gaits,” Mathematical Biosciences, Vol. 3, pp. 331-351, 1968
42. Muybridge, E., Animals in Motion, New Dover Edition, Dover Publications, Inc., New York, 1957.
43. Butler D., The Principles of Horseshoeing II, Revised and Enlarged Edition, Doug Butler Publisher, Maryville, Missouri, 1985.
44. Alexander, R. M., “The Gaits of Bipedal and Quadrupedal Animals,” The International Journal of Robotics Research, Vol. 3, No. 2, pp. 49-59, 1984.
45. Edwards, E. H., The Ultimate Horse Book, Dorling Kindersley, Inc., New York, 1991.
46. Alexander, R. M., Exploring Biomechanics: Animals in Motion, Scientific American Library, New York, 1992.
47. Seddon, T., Animal Movement, Facts On File, Inc., New York, 1988.
48. Hildebrand, M., “Symmetrical Gaits of Horses,” Science, Vol. 150, pp. 701-708, November 1967.
49. Bessenov, A. P. and Umnov, N. V., “The Analysis of Gaits in Six-Legged Vehicles According to Their Static Stability,” Proceedings of Symposium on Theory and Practice of Robots and Manipulators, Udine, Italy, 1973.
50. Sun, S. S., A Theoretical Study of Gaits for Legged Locomotion Systems, Ph.D. dissertation, The Ohio State University, Columbus, Ohio, 1974.
51. Song, S. M. and Waldron, K. J., “An Analytical Approach for Gait Study and Its Applications on Wave Gaits,” The International Journal of Robotics Research, Vol. 6, No. 2, pp. 60-71, 1987.
52. Qiu, X., Gao, Y., and Zhuang, J., “Analysis of the Dynamics of a Six-Legged Vehicle,” The International Journal of Robotics Research, Vol. 14, No. 1, pp. 1-8, 1995.
53. Funabashi, H., Ogawa, K., Gotoh, Y., and Kojima, F., “Synthesis of Leg-Mechanisms of Biped Walking Machines, Part I, Synthesis of Ankle-Path-Generator,” Bulletin of JSME, Vol. 28, No. 237, pp. 537-543, 1985.
54. Song, S. M., Vohnout, V. J., Waldron, K. J., and Kinzel, G. L., “Computer-Aided Design of a Leg for an Energy Efficient Walking Machine,” Mechanism and Machine Theory, Vol. 19, No. 1, pp. 17-24, 1984.
55. Ryan, A. D. and Hunt, K. H., “Adjustable Straight-Line Linkages-Possible Legged-Vehicle Applications,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 107, pp. 256-261, 1985.
56. Tseng, C. H., Liao, W. C., and Yang, T. C., MOST User’s Manual, Version 1.1, Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 1993.
57. Hall, A. S., Jr., Notes on Mechanism Analysis, Balt publishers, Lafayette, Indiana, 1981.
58. Liao, Y. H., Optimal Arrangement of Planar Linkages with Minimum Layers, M.S. thesis, National Cheng Kung University, Tainan, Taiwan, R.O.C., 1993.
59. Brown, H. T. and Smith, N. T., Five Hundred and Seven Mechanical Movements, Bronxville, New York, 1896.
60. Al-Sabeeh, A. K., “Irregular Gears for Cyclic Speed Variation,” Mechanism and Machine Theory, Vol. 26, No. 2, pp. 171-183, 1991.