| 研究生: |
邱宇祐 Chiou, Yu-You |
|---|---|
| 論文名稱: |
混相鐵酸鉍之鐵電域光調控 Optical control of ferroelectric domains in mixed-phase BiFeO3 |
| 指導教授: |
陳宜君
Chen, Yi-Chun 楊展其 Yang, Jan-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 多鐵材料 、混相鐵酸鉍 、光控 |
| 外文關鍵詞: | Multiferroic material, Mixed-phase BiFeO3, Optical control |
| 相關次數: | 點閱:85 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多鐵材料具有被電場、磁場以及應力調控的特徵,且材料具有記憶效應,意味著我們可以透過外加電場、磁場或是應力來寫入資訊,在非揮發性記憶體等元件中有其相當之應用價值。然而除了透過傳統利用電場、磁場或是應力的方式進行操控,在本研究中,我們更進一步引入了光控的方式來達到操控多鐵材料的鐵電性與磁性等功能特性之目的。而透過光照來操控鐵電材料特性的優勢在於,全過程屬於非接觸模式,不需要接觸樣品表面,在製程上有一定程度的方便性;此外,照光區域大小具有可調性,可由雷射光聚焦程度來達到照光區域大小的改變。在現存的多種多鐵材料中,混相鐵酸鉍因處於型態相邊界上(Morphotropic phase boundary, MPB)而具有較高的介電性、鐵電極化與晶相可調性,故我們選擇混相鐵酸鉍作為光誘發相變的研究材料。本研究中我們深入了解光對於混相鐵酸鉍相變的影響與機制,並分析照光區域結構的改變並提出其動態成長模型並且輔以相場理論計算來驗證,最後我們展示了該如何有規律地控制鐵電域與反鐵磁域的排列,以及如何透過照光的方式來調控一個區域的導電度與壓電系數。
The physical properties of crystals are predominately determined by the group symmetry of the crystal lattice. As a result, a change of crystal lattice would directly result in the corresponding modification of physical properties in crystals. The direct modulation of crystal lattices via external stimuli provides a pathway to control the functionalities of a wide spectrum of materials. In this work, the light stimulus is adopted to tailor the local crystal structure in multiferroic thin films, leading to optical control of the inherent ferroelectricity at room temperature.
Multiferroic BiFeO3 has both ferroelectric and antiferromagnetic properties at room temperature, which serves as a promising candidate for next-generation nanoelectronics. When the BiFeO3 is grown on LaAlO3, it becomes a mixed-phase system which is composed of tetragonal-like (T-like) and rhombohedral-like (R-like) phases. It is worth mentioning that the phase transition energy in such system is low so that we can control the phase by applying an electric field or stress according to the previous researches. In this study, we propose a new method to control these two phases and the resulting morphotropic phase boundaries in BiFeO3 via the illumination of 532 nm laser. AFM (atomic force microscopy) is adapted to modulate the as-grown mixed phase into pure T-like phase as the initial state. Our result shows that the center of laser spot prefers to adapt the T-like phase whereas the edge of laser spot favors the R-like phase. As the power becomes stronger, the domain wall of T-like phase shows a 90-degree rotation and while R-like phase grows perpendicular to the T-like phase. We analyzed the difference of light induced structures after the illumination process and proposed the growth model, further verified by phase field simulation. Moreover, we can control the T-like phase by moving the laser spot along different direction. Through the elegant control of stimulation process, not only we offer an efficient way to control the lattice structure of complex materials, but also a pavement towards photonic modulation of multifunctionalities.
1 W. Eerenstein, N. D. Mathur & J. F. Scott. Multiferroic and magnetoelectric materials. Nature 442, 759-765 (2006).
2 Hiroaki Onishi and Takashi Hotta . An orbital-based scenario for the magnetic structure of neptunium compounds. New Journal of Physics 6 (2004).
3 F. Zavaliche, P. Shafer, R. Ramesh et al, Polarization switching in
epitaxial BiFeO3 films. Appl Phys Lett 87 (25).(2005).
4 S. K. Streiffer, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J Appl Phys 83, 2742.(1998).
5 L.W. Martin J. Seidel, Conduction at domain walls in oxide
multiferroics. Nat Mater 8, 229.(2009).
6 C. H. Yang, J. Seidel, S. Y. Kim et al, Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8 (6), 485.(2009).
7 Darrell G. Schlom, Long-Qing Chen, Chang-Beom Eom et al, Strain Tuning of Ferroelectric Thin Films. Annu. Rev. Mater. Res. 2007.
8 D Sando, A Barthélémy and M Bibes, BiFeO3 epitaxial thin films and devices: past, present and future, Matter 26 473201 (23pp). (2014).
9 R. J. Zeches, M. D. Rossell, J. X. Zhang et al, A strain-driven
morphotropic phase boundary in BiFeO3. Science 326 (5955), 977.(2009).
10 H. M. Christen, J. H. Nam, H. S. Kim et al, Stress-induced
R-M-A-M-C-T symmetry changes in BiFeO3 films. Phys Rev B 83(14).(2011).
11 Z. H. Chen, Z. L. Luo, C. W. Huang et al, Low-symmetry monoclinic phases and polarization rotation path mediated by epitaxial strain in multiferroic BiFeO3 thin films. Adv Funct Mater 21 (1), 133.(2011).
12 J. X. Zhang, B. Xiang, Q.He et al, Large field-induced strains in a lead-free piezoelectric material. Nature nanotech 6 98-102 (2011).
13 A. R. Damodaran, S. Lee, J. Karthik et al, Temperature and thickness
evolution and epitaxial breakdown in highly strained BiFeO3 thin films. Phys Rev B 85 (2).(2012).
14 H. J. Liu, C. W. Liang, W. I. Liang et al, Strain-driven phase
boundaries in BiFeO3 thin films studied by atomic force microscopy and x-ray diffraction. Phys Rev B 85 (1).(2012).
15 Yi-Chun Chen , Qing He , Feng-Nan Chu et al, Electrical Control of Multiferroic Orderings in Mixed-Phase BiFeO3 Films. Adv Mater, 24, 3070–3075.(2012).
16 朱逢男, 鐵酸鉍薄膜在電場下的相調控. NCKU:Tainan, Taiwan.(2011).
17 曾賢德、果尚志, 奈米電性之掃描探針量測技術, 物理雙月刊, 25, 5. (2003).
18 李欣樺, 應變誘發的形態相邊界上之電域結構. NCKU:Tainan, Taiwan.(2011).
19 黃英碩, 掃描探針顯微術的原理及應用, 科儀新知, 26, 4. (2005).
20 Bruker Corporation, PeakForce-QNM Advanced Applications Training 2014.(2014).
21 Xiaoning Jiang, Wenbin Huang, Shujun Zhang, Flexoelectric nano-generator: Materials, structures and devices. Nano Energy, 2, 1079–1092. (2013).
校內:2018-09-01公開