簡易檢索 / 詳目顯示

研究生: 鄭宏仁
Cheng, Hung-Jen
論文名稱: 乙醯基化環糊精應用於整體毛細管柱 之研究
The study of per-acetyl cyclodextrin on monolithic capillary column
指導教授: 許清雲
HSU, Ching -Yun
黃平志
Hwang, Pin-Chin
桂椿雄
Kuei, Chun-Hsiung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 48
中文關鍵詞: 整體管柱環糊精
外文關鍵詞: cyclodextrin, monolithic column
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

      整體管柱(monolithic column)之開發研究於近幾年有增加之情況,其製作方式是將矽膠單體注入管柱中進行交鏈反應(cross-linking),以固定靜相物質於管柱中,使管柱更加穩定並增加其抗壓性,此種將管柱內壁、支撐物及靜相化為一體之管柱稱之為整體管柱或矽膠管柱(Sol-Gel column)。此種管柱可改變膠體之組成控制填充管柱內路徑孔隙大小,以達到極佳之分離效率,或者改變不同之靜相,來進行鏡相異構物之分離。
      環糊精(cyclodextrin)利用其本身所構成之空腔,與鏡相異構物形成主-客複合體(Host-guest complexation),依據複合體穩定度的不同達到分離之效果,其廣泛應用於具鏡相異構物藥物的分離上。使用β-環糊精進行乙醯基化反應,並使乙醯基化環糊精之6-OH可直接與(3-Glycidoxypropyl)trimethoxysilane(GPTMOS)反應鍵結在矽膠粒子上。衍生乙醯基化環糊精之矽膠粒子填入毛細管柱中,利用稀膠溶液將粒子固定於管柱內,製備成整體管柱。
      使用Naphthalene、Acenaphthene、Phenanthracene、Fluoranthene 和Pyrene測試乙醯基化環糊精腔口之大小和此管柱對PAHs分離之效率。而在改變溶劑種類時,發現使用甲醇會比使用Acetonitrile得到較高的解析;但在改變溶劑與水的比例時,發現溶劑使用Acetonitrile和提高水的比例會增加此五種PAHs的解析,但溶劑為甲醇時,增加水的比例則不會提高Fluoranthene 和Pyrene的解析。
      而在以diamethyl-2-(2-(p-toluidino)-4-methylpent-1-en-3ylami- no)-2-(4-hydroxyphenyl)acetate和methyl-2-(2-(p-toluidino)-4-methyl- pent-1-en-3-ylamino)-3-phenylpropanoate測試進入腔口之性質方面,發現進入乙醯基化環糊精之腔口的位置為苯環,而苯環的位置若具有親水性基團,則分析物就不會造成解析。而鏡相異構物(D,L)-1-phenyl- ethylamine測試管柱對靜相異構物分離之性能。發現此種管柱可解析相異構物(D,L)-1-phenylethylamine。

    Abstract

      In recent years, the development and research of the monolithic column is prosperously. This technique is packing stationary phase particles into a column followed by injecting the sol-gel into the column to carry out cross-linking reaction, which bonding the particles in the column and making the inner wall of column, support and stationary phase into one unity. This kind of column is called monolithic column or sol-gel column. The column could be reached higher efficiency by changing the composition of the sol-gel, controlling the size of the inner diameter and porosity of the monolithic column. It also could separate enantiomeric drugs by using some specific stationary phase particles.
      Cyclodextrins, which utilizing it’s cavity to complex with a variety of enatiomers, have used extensively to separate enantiomeric drugs by the diffferents stability of the enantiomeric inclusion complex formation. Acetylated β- CD to form 2,3-di-O-acetyl-6-O-β-CD, which directly react with (3-Glycidoxypropyl)trimethoxysilane then bonded to silica particles . To prepare the monolithic column is packing the particles into the capillary column, then using Sol-Gel to fix it in the column.
      Using Naphthalene、Acenaphthene、Phenanthracene、Fluoranthene and Pyrene to test the size of Acetyl-β- CD’s cavity and the efficiency of the column. Changing the sort of the solvent, using methanol will get more resolution then Acetonitrile. Changing the percentage of solvent and water, using Acetonitrile and raising the percentage of water will increase the resolution of those. But using methanol and changing the percentage of water, won’t increase the resolution of Fluoranthene and Pyrene.
      Using diamethyl-2-(2-(p-toluidino)-4-methylpent-1-en-3ylamino)- 2-(4-hydroxyphenyl)acetate and methyl-2-(2-(p-toluidino)-4-methyl- pent-1-en-3-ylamino)-3-phenylpropanoate to test the character of the molecules entering the Acetyl-β- CD’s cavity. The result is that the phenyl group is the position to enter the Acetyl-β- CD’s cavity. And the phenyl group’s para-position has hydrophilic group, it can’t be resoluted. (D,L)-1-phenyl-ethylamine is to confirm the mechanism of the chiral separation. This column can separate (D,L)-1-phenyl-ethylamine.

    中文摘要----------------------------------------------------------------------------I 英文摘要--------------------------------------------------------------------------III 目錄--------------------------------------------------------------------------------V 表目錄--------------------------------------------------------------------------VIII 圖目錄---------------------------------------------------------------------------- IX 第一章 緒論----------------------------------------------------------------------1 1-1塗佈式開口毛細管柱-----------------------------------------------------1 1-2填充式毛細管---------------------------------------------------------------2 1-3整體毛細管柱---------------------------------------------------------------3 1-3-1聚合物整體管柱(Polymer monolithic columns)------------------4 1-3-2粒子固定式整體管柱(Particle-fixed monolithic columns)------5 1-4鏡相選擇器(Chiral selector)之分離簡介--------------------------------6 1-4-1醣類(Saccharides)---------------------------------------------------7 1-4-2蛋白質(protein) ----------------------------------------------------10 1-4-3 Pirkle phase------------------------------------------------------------11 1-4-4巨環抗生素(Macrocyclic antibiotics) ----------------------11 1-4-5配位子取代(Ligand-exchange) ----------------------------------12 1-4-6鏡相的界面活性劑(chiral surfactants) ---------------------13 1-5研究目的--------------------------------------------------------------------14 第二章 實驗操作---------------------------------------------------------------15 2-1 儀器設備及藥品---------------------------------------------------------15 2-1-1 儀器設備--------------------------------------------------------------15 2-1-2 藥品--------------------------------------------------------------------16 2-2 實驗步驟-------------------------------------------------------------------20 2-2-1實驗流程---------------------------------------------------------------20 2-2-2 環糊精衍生化及去保護步驟--------------------------------------21 2-2-3 環糊精與矽膠粒子鍵結--------------------------------------------22 2-2-4整體管柱製備--------------------------------------------------------23 2-2-5 管柱上機前處理-----------------------------------------------------26 2-2-6 管柱測試-------------------------------------------------------------27 第三章 結果與討論------------------------------------------------------------30 3-1 環糊精衍生化之探討----------------------------------------------------30 3-1-1衍生中間產物之步驟探討與鑑定---------------------------------30 3-1-2中間產物之去保護步驟探討與鑑定------------------------------33 3-1-3衍生化乙醯基化環糊精之探討------------------------------------34 3-2環糊精鍵結於矽膠粒子之探討與鑑定-------------------------------36 3-3管柱分離與效能探討-----------------------------------------------------39 3-3-1對Naphthalene、Acenaphthene、Phenanthracene、Fluoranthene 和Pyrene 等五種PAHs的分離--------------------------------------39 3-3-2比較diamethyl-2-(2-(p-toluidino)-4-methylpent-1-en-3ylamin- o)-2-(4-hydroxyphenyl)acetate和methyl-2-(2-(p-toluidino)-4-me- thyl-pent-1-en-3-ylamino)-3-phenylpropanoate的分離-------------42 3-3-3對靜相異構物(D,L)-1-phenylethylamine之分離----------------44 第四章 結論---------------------------------------------------------------------45 第五章 未來展望---------------------------------------------------------------46

    1. J. W. Jorgenson, K. D. Lukacs, Anal. Chem. 53 (1981) 1298
    2. J. D. Hayes, A. Malik, Anal. Chem. 73 (2001) 987
    3. R.J. Boughtflower, T. Underwood, J. Maddin, Chromatographia 41 (1995) 398
    4. D. Tong, K.D. Bartle, A.A. Clifford, J. Microcol. Sep. 6 (1994) 249
    5. L.A. Colón, T.D. Maloney, A.M. Fermier, J. Chromatogr. A 887 (2000) 43
    6. H. Zou, X. Huang, M. Ye, Q. Luo, J. Chromatogr. A 954 (2002) 5
    7. C. Fujimoto, Anal.Chem. 67 (1995) 2050
    8. N. Ishizuka, H. Minakuchi, K. Nakanisi, N. Soga, H. Nagayama, K. Hosoya, N. Tanaka, Anal. Chem. 72 (2000) 1275
    9. R. Asiaie, X. Huang, D. Farnan, C. Horvath, J. Chromatogr. A 806 (1998) 251
    10. Q. Tang, B. Xin, M.L. Lee, J. Chromatogr. A 837 (1999) 35
    11. W. Saenger, J. Jacob, K. Gessler,D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith and T. Takaha, Chem. Rev. 98 (1998)1787.
    12. J. Szejtli, Cyclodextrins and their Inclusion Complexes, Akademiai Kiado, Budapest, 1982
    13. S. Fanali, J. Chromatogr. A 792 (1997) 227
    14. S. Fanali, J. Chromatogr. A 875 (2000) 89
    15. M. Miura, K. KKawamoto, K. Funazo, M. Tanaka, Analytica Chemica Acta 373 (1998) 47
    16. H. Nishi, S. Terabe, J. Chromatogr. A 694 (1995) 245
    17. H. Nishu, J. Chromatogr. A 780 (1997) 243
    18. U. Schimitt, J. BoJarski, U. Holzgrabe, Electrophoresis 22 (2001) 3237
    19. S. Mayer, V. Schuring, Electrophoresis 15 (1994) 835
    20. Y. Wang, Z. Zeng, N. Guan, J. Cheng, Electrophoresis 22 (2001) 2167
    21. S. Li, D. K. Lloyd, J. Chromatogr. A 666 (1994) 321
    22. T. Araki, Y. Kashiwamoto, S. Tsunoi, M. Tanaka, J. Chromatogr. A 845 (1999) 455
    23. J. Kang, D. Wistuba, V. Schurig, Electrophoresis 23 (2002) 1116
    24. G. Gübitz, M. G. Schmid, Electrophoresis 21 (2000) 4112
    25. E. Francotte, M. Jung, Chromatographia 42 (1996) 521
    26. D. Wistuba, V. Schuring, Electrophoresis 21 (2000) 4136
    27. D. K. Lloyd, A. F. Aubry, E. Delorennzi, J. Chromatogr. A 792 (1997) 349
    28. D. K. Llod, S. Li, P. Ryan, J. Chromatogr. A 694 (1995) 285
    29. C. J. Welch, J. Chromatogr. A 666 (1994) 3
    30. R. Crossley, Chirality and the Biological activity of drugs
    31. A. Dermaux, F. Lynen, P. Sandra, J. High Resolut. Chromatogr. 829 (1998) 115
    32. H. Wikström, L. A. Svensson, P. K. Owens, J. Chromatogr. A 869 (2000) 395
    33. F. Gasparrini, D. Misiti, C. Villani, J. Chromatogr. A 906 (2001) 35
    34. Z. Chen, K. Uchiyama, T. Hobo, J. Chromatogr. A 942 (2002) 83
    35. P. FüGEDI, P. NÁNÁSI, Carbohydrate Research 175 (1988) 173
    36. K. Takeo, H. Mitoh, K. Uemura, Carbohydrate Research 187 (1989) 173
    37. J. B. Vincent, D. M. Kirby, T. V. Nguyen, G. Vigh, Anal. Chem. 69 (1997) 4419
    38. 鄧名志, “環糊精應用於整體管柱之製備” 國立成功大學化學研究所碩士論文 2003
    39. 溫浈源, “整體管柱之製備與應用” 國立成功大學化學研究所碩士論文 2002
    40. M. Miura, K. Kawamoto, K. Funazo, M. Tanaka, Analytica Chimica. Acta 373 (1998) 47
    41. T. Araki, Y. Kashiwamoto, S. Tsunoi, M Tanaka, J. Chromatogr. A 845 (1999) 455

    下載圖示 校內:立即公開
    校外:2004-07-26公開
    QR CODE