簡易檢索 / 詳目顯示

研究生: 江欣陶
Chiang, Hsin-TAO
論文名稱: A位置陽離子於鈣鈦礦材料表面修飾與光伏特性之探討
The effect of A-site cation on surface modification and photovoltaic performances of halide perovskite materials
指導教授: 陳昭宇
Chen, Peter
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 77
中文關鍵詞: 鈣鈦礦太陽能電池A位置陽離子有機陽離子二/三維疊成鈣鈦礦
外文關鍵詞: perovskite solar cells, A-site cation, organic cation, 2D/3D perovskite heterojunction structure
相關次數: 點閱:131下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦為近年來太陽能電池發展最受熱門的研究材料,鈣鈦礦太陽能電池的轉換效率在短短幾年內已經提升至25.7%,但鈣鈦礦易受水氣影響而裂解,仍需改善元件的環境穩定性。二維鈣鈦礦材料具有良好的耐熱性及耐濕性使許多團隊投入研究,但二維鈣鈦礦擁有較大的能隙,使元件的轉換效率並不理想。為了保留三維鈣鈦礦良好的光伏性能以及二維結構的高穩定性,有團隊將大尺寸陽離子疊加於三維鈣鈦礦上,在三維結構上成形成一層薄薄的二維結構,藉此改善元件的環境穩定性。
    本研究以FA0.9Cs0.1PbI3三維鈣鈦礦為基底,選用Phenylammonium (PA+)、Phenylethylammonium (PEA+)及1,4-Benzene diammonium (BD2+)三種苯基結構的陽離子疊加於三維鈣鈦礦上進行探討,可比較不同鍊長的單胺基陽離子,及單、雙頭氨基陽離子對鈣鈦礦薄膜表面的影響,並分析不同陽離子對鈣鈦礦電池光伏性能及環境穩定性的影響。研究發現適量的PA+和PEA+單胺基陽離子能夠改善鈣鈦礦的表面鈍化、對薄膜表面修飾,並且提升元件效率、改善元件的穩定性,而過高濃度會使界面的傳輸電阻增加,反而使元件效能降低。雙頭氨基的BDI的溶解度低,因此分子容易析出,造成薄膜品質下降,使元件效率及穩定性不佳。
    PA+和PEA+單胺基陽離子皆能改善薄膜品質,但僅有PEAI溶液在表面形成二維結構,而PA+則無,研究發現高濃度的PAI疊加於三維鈣鈦礦上會有新結構形成,推斷PA+陽離子尺寸大小為A位置的鈣鈦礦可以形成二維結構,但形成機率較小。

    Recently, the perovskite solar cells(PSC) have achieved 25.7% high efficiency. However, the stability of the perovskite is still a big issue. Many research have applied several kinds of large-size organic cations on the surface of 3D perovskite films to form thin 2D perovskite layers, and obtain high-efficiency PSC with an ensured device stability. Here, we choose a series of phenyl ammonium cations likes Phenylammonium(PA+), Phenylethylammonium (PEA+) and 1,4-Benzene diammonium(BD2+), to analyze the effect of different cations on the surface of FA0.9Cs0.1PbI3 perovskite films. Both PA+ and PEA+ monoamine cations can modify the surface of the film, and thus improve the efficiency and stability of the device. The solubility of BDI in IPA is low, so molecules are easily precipitated in the solvent. Outcome to be the quality of the film is degraded, and the efficiency and stability of the device are not good as well. Moreover, PEAI will form 2D layer on the surface of 3D perovskite, while PAI will not. It is inferred that the size of the PA+ cation can form a 2D structure, but with the lower probability.

    摘要 i 致謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池之演進與發展 1 1.2.1 第一代太陽能電池 3 1.2.2 第二代太陽能電池 3 1.2.3 第三代太陽能電池 4 1.3 太陽能電池之基本原理 7 1.3.1 太陽光譜與空氣質量(Air Mass) 7 1.3.2 Shockley-Queisser 理論 7 1.3.3 太陽能電池元件量測 8 1.4 研究動機 11 第二章 文獻回顧 13 2.1 有機無機混成鈣鈦礦太陽能電池之發展 13 2.2 三維鈣鈦礦材料 16 2.2.1 A位置一價陽離子 17 2.2.2 B位置二價陽離子 19 2.2.3 X位置鹵素陰離子 20 2.3 二維鈣鈦礦材料鈣鈦礦 24 2.3.1 二/三維混成鈣鈦礦 26 2.3.2 二/三維疊層鈣鈦礦 31 第三章 實驗方法與儀器分析 35 3.1 實驗儀器與藥品 35 3.1.1 實驗儀器 35 3.1.2 實驗藥品 36 3.2 實驗流程圖 37 3.3 鈣鈦礦太陽能電池元件製作 37 3.3.1 基板製備 37 3.3.2 c-TiO2緻密層製備 38 3.3.3 mp-TiO2多孔層製備 38 3.3.4 鈣鈦礦層製備 38 3.3.5 陽離子碘化物溶液製備 39 3.3.6 Spiro-OMeTAD電洞傳輸層製備 39 3.3.7 電極製備 39 3.4 量測、特性分析儀器原理 40 3.4.1 吸收光譜量測 (Ultraviolet-visible spectrophotometer,UV-Vis) 40 3.4.2 光致發光光譜儀 (Photoluminescence,PL) 41 3.4.3 X光繞射儀 (X-ray Diffraction, XRD) 41 3.4.4 低掠角廣角X光散射儀(Grazing-Incidence Wide-Angle X-ray Scattering, GIWAXS) 42 3.4.5 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 43 3.4.6 I-V特性曲線量測分析(I-V curve measurement) 44 3.4.7 外部量子轉換效率量測(Incident Photo to Current Efficiency, IPCE) 44 3.4.8 傅立葉轉換紅外光譜儀 (Fourier-transform infrared spectroscopy,FTIR) 45 第四章 結果與討論 46 4.1 三維鈣鈦礦經不同陽離子表面處理之分析 46 4.1.1 XRD和GIWAXS分析 47 4.1.2 PL與UV-vis分析 52 4.1.3 鈣鈦礦薄膜表面SEM分析 57 4.2 不同陽離子碘化物表面處理的鈣鈦礦元件及穩定度分析 60 4.2.1 不同陽離子碘化物表面處理的鈣鈦礦之元件表現分析 60 4.2.2 不同陽離子碘化物表面處理的鈣鈦礦薄膜及元件之穩定性測試 64 4.3 單氨基之不同碳鍊陽離子 67 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 71 參考文獻 72

    參考文獻
    [1] C. E. Fritts, "On a new form of selenium cell, and some electrical discoveries made by its use," American Journal of Science, no. 156, pp. 465-472, 1883.
    [2] S. Albrecht et al., "Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature," (in English), Energ Environ Sci, vol. 9, no. 1, pp. 81-88, 2016.
    [3] R. S. Ohl, "Light-Sensitive Electric Device," U.S. Patent, vol. 2, 1941.
    [4] D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, no. 5, pp. 676-677, 1954.
    [5] F. Haase et al., "Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells," Solar Energy Materials and Solar Cells, vol. 186, pp. 184-193, 2018.
    [6] F. Schindler et al., "Towards the efficiency limits of multicrystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 185, pp. 198-204, 2018.
    [7] T. Matsui et al., "High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability," Applied Physics Letters, vol. 106, no. 5, p. 053901, 2015.
    [8] B. M. Kayes et al., "27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination," in 2011 37th IEEE Photovoltaic Specialists Conference, 2011, pp. 4-8.
    [9] M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl‐Ebinger, M. Yoshita, and A. W. Ho‐Baillie, "Solar cell efficiency tables (version 54)," Progress in Photovoltaics: Research and Applications, vol. 27, no. 7, pp. 565-575, 2019.
    [10] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, and H. Sugimoto, "Cd-Free Cu(In,Ga)(Se,S)2 Thin-Film Solar Cell With Record Efficiency of 23.35%," IEEE Journal of Photovoltaics, vol. 9, no. 6, pp. 1863-1867, 2019.
    [11] B. O'regan and M. Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol. 353, no. 6346, p. 737, 1991.
    [12] M. Grätzel, "Dye-sensitized solar cells," Journal of photochemistry and photobiology C: Photochemistry Reviews, vol. 4, no. 2, pp. 145-153, 2003.
    [13] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes," Chemical Communications, vol. 51, no. 88, pp. 15894-15897, 2015.
    [14] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
    [15] J. Jeong et al., "Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells," Nature, vol. 592, no. 7854, pp. 381-385, 2021.
    [16] NREL. "Best Research-Cell Efficiency Chart." https://www.nrel.gov/pv/cell-efficiency.html .
    [17] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," Journal of Applied Physics, vol. 32, no. 3, pp. 510-519, 1961.
    [18] A. Antonini, "Photovoltaic Concentrators - Fundamentals, Applications, Market & Prospective," 2010.
    [19] G. Instruments, "Basic Principles and Measurements."
    [20] A. E. Tutorials, "Solar cell I-V characteristic." https://www.alternative-energy-tutorials.com/photovoltaics/solar-cell-i-v-characteristic.html.
    [21] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, and K. Zhu, "Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys," Chemistry of Materials, vol. 28, no. 1, pp. 284-292, 2016.
    [22] H.-S. Kim et al., "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, vol. 2, no. 1, p. 591, 2012.
    [23] J. Burschka et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, no. 7458, pp. 316-319, 2013.
    [24] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, and S. I. Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature Materials, vol. 13, no. 9, pp. 897-903, 2014.
    [25] W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon, and R. G. Palgrave, "On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system," Chemical Science, vol. 7, no. 7, pp. 4548-4556, 2016.
    [26] Z. Yi, N. H. Ladi, X. Shai, H. Li, Y. Shen, and M. Wang, "Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?," Nanoscale Advances, vol. 1, no. 4, pp. 1276-1289, 2019.
    [27] Z. Huang, D. Wang, S. Wang, and T. Zhang, "Highly Efficient and Stable MAPbI3 Perovskite Solar Cell Induced by Regulated Nucleation and Ostwald Recrystallization," Materials, vol. 11, no. 5, p. 778, 2018.
    [28] F. F. Targhi, Y. S. Jalili, and F. Kanjouri, "MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties," Results in Physics, vol. 10, pp. 616-627, 2018.
    [29] J.-W. Lee, D.-J. Seol, A.-N. Cho, and N.-G. Park, "High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3," Advanced Materials, vol. 26, no. 29, pp. 4991-4998, 2014.
    [30] W. S. Yang et al., "High-performance photovoltaic perovskite layers fabricated through intramolecular exchange," Science, vol. 348, no. 6240, pp. 1234-1237, 2015.
    [31] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties," Inorg Chem, vol. 52, no. 15, pp. 9019-38, 2013.
    [32] G. E. Eperon et al., "Inorganic caesium lead iodide perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 39, pp. 19688-19695, 2015.
    [33] T. Chen et al., "Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite," Science Advances, vol. 2, no. 10, p. e1601650, 2016.
    [34] C. Yi et al., "Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells," Energ Environ Sci, vol. 9, no. 2, pp. 656-662, 2016.
    [35] S. Tang, S. Huang, G. J. Wilson, and A. Ho-Baillie, "Progress and Opportunities for Cs Incorporated Perovskite Photovoltaics," Trends in Chemistry, vol. 2, no. 7, pp. 638-653, 2020.
    [36] F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, and M. G. Kanatzidis, "Lead-free solid-state organic–inorganic halide perovskite solar cells," Nature Photonics, vol. 8, no. 6, pp. 489-494, 2014.
    [37] N. K. Noel et al., "Lead-free organic–inorganic tin halide perovskites for photovoltaic applications," Energ Environ Sci, vol. 7, no. 9, pp. 3061-3068, 2014.
    [38] D. Cortecchia et al., "Lead-Free MA2CuClxBr4–x Hybrid Perovskites," Inorganic Chemistry, vol. 55, no. 3, pp. 1044-1052, 2016.
    [39] Y. Jiao, Y. Lv, J. Li, M. Niu, and Z. Yang, "Exploring electronic and optical properties of CH3NH3GeI3 perovskite: Insights from the first principles," Computational and Theoretical Chemistry, vol. 1114, pp. 20-24, 2017.
    [40] C. Li et al., "Halide-Substituted Electronic Properties of Organometal Halide Perovskite Films: Direct and Inverse Photoemission Studies," ACS Applied Materials & Interfaces, vol. 8, no. 18, pp. 11526-11531, 2016.
    [41] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells," Nano Letters, vol. 13, no. 4, pp. 1764-1769, 2013.
    [42] T. Jesper Jacobsson et al., "Exploration of the compositional space for mixed lead halogen perovskites for high efficiency solar cells," Energ Environ Sci, vol. 9, no. 5, pp. 1706-1724, 2016.
    [43] W. Ke et al., "Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells," Advanced Materials, vol. 28, no. 26, pp. 5214-5221, 2016.
    [44] Y. Cai, S. Wang, M. Sun, X. Li, and Y. Xiao, "Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability," Organic Electronics, vol. 53, pp. 249-255, 2018.
    [45] Y. Yu et al., "Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives," ChemSusChem, vol. 9, no. 23, pp. 3288-3297, 2016.
    [46] S. N. Ruddlesden and P. Popper, "The compound Sr3Ti2O7 and its structure," Acta Crystallographica, vol. 11, no. 1, pp. 54-55, 1958.
    [47] D. Sirbu, F. H. Balogun, R. L. Milot, and P. Docampo, "Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design," Advanced Energy Materials, vol. 11, no. 24, p. 2003877, 2021.
    [48] B. Saparov and D. B. Mitzi, "Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design," Chemical Reviews, vol. 116, no. 7, pp. 4558-4596, 2016.
    [49] D. Ghosh et al., "Charge carrier dynamics in two-dimensional hybrid perovskites: Dion–Jacobson vs. Ruddlesden–Popper phases," Journal of Materials Chemistry A, vol. 8, no. 42, pp. 22009-22022, 2020.
    [50] X. Li, J. M. Hoffman, and M. G. Kanatzidis, "The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency," Chemical Reviews, vol. 121, no. 4, pp. 2230-2291, 2021.
    [51] I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee, and H. I. Karunadasa, "A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability," Angewandte Chemie International Edition, vol. 53, no. 42, pp. 11232-11235, 2014.
    [52] D. H. Cao, C. C. Stoumpos, O. K. Farha, J. T. Hupp, and M. G. Kanatzidis, "2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications," Journal of the American Chemical Society, vol. 137, no. 24, pp. 7843-7850, 2015.
    [53] L. N. Quan et al., "Ligand-Stabilized Reduced-Dimensionality Perovskites," Journal of the American Chemical Society, vol. 138, no. 8, pp. 2649-2655, 2016.
    [54] G. Grancini et al., "One-Year stable perovskite solar cells by 2D/3D interface engineering," Nature Communications, vol. 8, no. 1, p. 15684, 2017.
    [55] H. Tsai et al., "Stable Light-Emitting Diodes Using Phase-Pure Ruddlesden-Popper Layered Perovskites," (in eng), Adv Mater, vol. 30, no. 6, 2018.
    [56] S. Ahmad et al., "Dion-Jacobson Phase 2D Layered Perovskites for Solar Cells with Ultrahigh Stability," Joule, vol. 3, no. 3, pp. 794-806, 2019.
    [57] P. Chen, Y. Bai, S. Wang, M. Lyu, J.-H. Yun, and L. Wang, "In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells," Advanced Functional Materials, vol. 28, no. 17, p. 1706923, 2018.
    [58] H.-S. Yoo and N.-G. Park, "Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells," Solar Energy Materials and Solar Cells, vol. 179, pp. 57-65, 2018.
    [59] H. Kim et al., "Optimal Interfacial Engineering with Different Length of Alkylammonium Halide for Efficient and Stable Perovskite Solar Cells," Advanced Energy Materials, vol. 9, no. 47, p. 1902740, 2019.
    [60] J. R. Lakowicz, "Instrumentation for Fluorescence Spectroscopy," in Principles of Fluorescence Spectroscopy. Boston, MA: Springer US, 2006, ch. Chapter 2, pp. 27-61.
    [61] M. Kot, "In-operando hard X-ray photoelectron spectroscopy study on the resistive switching physics of HfO2-based RRAM," 2014.
    [62] K. A. Smith et al., "Molecular Origin of Photovoltaic Performance in Donor-block-Acceptor All-Conjugated Block Copolymers," Macromolecules, vol. 48, no. 22, pp. 8346-8353, 2015/11/24 2015.
    [63] R. Rahman, "MECHANISTIC STUDIES OF ATOMIC LAYER DEPOSITION AND THERMAL ATOMIC LAYER ETCHING PROCESSES OF VARIOUS OXIDE THIN FILMS," 2018.
    [64] A. A. Zhumekenov et al., "Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length," ACS Energy Letters, vol. 1, no. 1, pp. 32-37, 2016.
    [65] W. Peng et al., "Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals," Nano Letters, vol. 17, no. 8, pp. 4759-4767, 2017/08/09 2017.
    [66] Y. Fu et al., "Incorporating Large A Cations into Lead Iodide Perovskite Cages: Relaxed Goldschmidt Tolerance Factor and Impact on Exciton–Phonon Interaction," ACS Central Science, vol. 5, no. 8, pp. 1377-1386, 2019.
    [67] A. A. Bakulin et al., "Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites," The Journal of Physical Chemistry Letters, vol. 6, no. 18, pp. 3663-3669, 2015.
    [68] R. Heyrovska, "A Simple and Exact Interpretation of the Bond Lengths and Stacking Distances in Benzene and its Dimers in Terms of Atomic Covalent Radii " 2016.

    無法下載圖示 校內:2027-09-28公開
    校外:2027-09-28公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE