| 研究生: |
歐岱霖 Ou, Tai-Lin |
|---|---|
| 論文名稱: |
單坡一維三角洲受交替清水流及異重流影響之研究 Study of single-slope delta in response to alternative clean-water and hyperpycnal inflows |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 三角洲 、異重流 、模型實驗 、自我相似 、擴散理論 、海岸線演變 、水庫淤沙 |
| 外文關鍵詞: | delta, hyperpycnal flow, model experiment, self-similarity, diffusion theory, coastline evolution, reservoir silt |
| 相關次數: | 點閱:208 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究著重於改變單一坡度,以A系列及B系列區分入流密度的差異與順序,探討一維三角洲在單一坡度上交替入流是否維持其自我相似性。透過利用中尺度新的一維三角洲實驗水槽,可以觀測並分析的組數較以往來得更多,對長時間交替三角洲是否維持其自我相似性(self-similarity)有更深入的研究與分析。
實驗成果顯示,單一不同坡度的三角洲在形貌的發展上,若入砂以及入流的條件保持恆定不變,形貌上的發展也會呈高度的自我相似性。在實驗進行的過程中,在發生清水流(homopycnal flow)交替至異重流(hyperpycnal flow)的情況,清水流三角洲(Gilbert delta)的形貌會在入流密度交替的剛開始被異重流所破壞,在一定時間的調整期(adjustment period)後,三角洲的形貌會改變為異重流三角洲(hyperpycnal delta),並在入流及入砂條件穩定的情況下呈自我相似性發展,相反地,在異重流交替至清水流的情況,清水流三角洲會直接以原本異重流三角洲為底床開始發展,並且呈現自我相似性。
在實驗分析的部份,我們利用Lai and Carpart (2007, 2009)所發展至今的一系列Matlab程式進行分析,透過利用縮時攝影(time-lapse photograph)以每五秒拍攝一張照片觀察三角洲形貌的發展歷程,並透過數位影像處理取得三角洲的底床高程以及兩個移動邊界隨時間的移動軌跡,再利用無因次化(normalized)來判斷三角洲之自我相似性。實驗取得的結果證實了在三種不同的單一坡度中,若入流以及入砂的條件不變,三角洲形貌的發展會呈高度的自我相似性。本研究進行了A系列以及B系列兩種不同的交替順序互相驗證,且增加了實驗模型之尺度亦能將實驗時間拉長,使三角洲之自我相似性在單一坡度上的分析更加準確,並補足了先前研究所缺少的部份,未來能與現地所取得的資料結合,在實務上也能協助進行水庫清淤、海岸線變化及三角洲體積之預測等部份。
In the field cases, the inflow situation will be complex and changeable. If a river with high sediment concentration flows in to sea gate, hyperpycnal delta will be formed in this situation, but the environment might changes with time, the river started to carry low sediment concentration that close to receiving water basin and formed Gilbert delta. In this study, we focus on using alternatively density of inflow to simulate the inflow changes in field cases and observe the deltas profiles in alternating inflow. At the same time, we also track the two moving boundaries of the delta to confirm the self-similarity of the delta. We use salt water and clean water to simulate hyperpycnal flow and homopycnal flow respectively. These two kinds of inflows are provided alternatively under constant time period in the experiment. There are three different bedrock slopes are selected to use in experiment runs. To make up for the missing parts of the previous research, we build a lager experiment flume for extend the experiment time. We have set A series (Gilbert delta first and then hyperpycnal delta) and B series (hyperpycnal delta first and then Gilbert delta) to represent different inflow alternating sequence. The experiment results show that delta has strong self-similarity exist in the alternatively density of inflow situation.
Bell, J. A. (2008). Promiscuous things: perspectives on cultural property through photographs in the Purari Delta of Papua New Guinea. International Journal of Cultural Property, 15(2), 123-139.
Bell, C. M. (2009), Quaternary lacustrine braid deltas on Lake General Carrera in southern Chile, Andean geology, 36(1), 51-65.
Caldwell, R. L., & Edmonds, D. A. (2014). The effects of sediment properties on
deltaic processes and morphologies: A numerical modeling study. Journal of Geophysical Research: Earth Surface, 119(5), 961-982.
Capart, H., Bellal, M., & Young, D. L. (2007). Self-similar evolution of semi-infinite alluvial channels with moving boundaries. Journal of Sedimentary Research, 77(1), 13-22.
Carbonel, P., & Moyes, J. (1987). Late Quaternary paleoenvironments of the Mahakam Delta (Kalimantan, Indonesia). Palaeogeography, Palaeoclimatology, Palaeoecology, 61, 265-284.
Cantelli, A., C. Pirmez, S. Johnson, and G. Parker (2011), Morphodynamic and stratigraphic evolution of self-channelized subaqueous fans emplaced by turbidity currents, Journal of Sedimentary Research, 81(3), 233-247.
Clarke, J. H., S. Brucker, J. Muggah, I. Church, D. Cartwright, P. Kuus, T. Hamilton, D. Pratomo, and B. Eisan (2012), The Squamish ProDelta: monitoring active landslides and turbidity currents, paper presented at Canadian Hydrographic Conference 2012, Proceedings.
Clarke, J. E. H., Marques, C. R. V., & Pratomo, D. (2014). Imaging active mass-wasting and sediment flows on a fjord delta, Squamish, British Columbia. In Submarine Mass Movements and Their Consequences (pp. 249-260). Springer, Cham.
Clare, M. A., Clarke, J. H., Talling, P. J., Cartigny, M. J., & Pratomo, D. G. (2016). Preconditioning and triggering of offshore slope failures and turbidity currents revealed by most detailed monitoring yet at a fjord-head delta. Earth and Planetary Science Letters, 450, 208-220.
Correggiari, A., Cattaneo, A., & Trincardi, F. (2005). The modern Po Delta system: lobe switching and asymmetric prodelta growth. Marine Geology, 222, 49-74.
Gilbert, G. K. (1890). Lake Bonneville (Vol. 1). US government printing office.
Kostic, S., and G. Parker (2003), Progradational sand-mud deltas in lakes and reservoirs. Part 2. Experiment and numerical simulation, Journal of Hydraulic Research, 41(2), 141-152.
Lai, S. Y. J. (2006). Self-similar delta formation by hyperpycnal flows: theory and experiments (Doctoral dissertation, MS thesis, Graduate Institute of Civil Engineering, National Taiwan University, Taiwan).
Lai, S. Y. J, and H. Capart (2007), Two‐diffusion description of hyperpycnal deltas, Journal of Geophysical Research: Earth Surface, 112(F3).
Lai, S. Y. J, and H. Capart (2009), Reservoir infill by hyperpycnal deltas over bedrock, Geophysical Research Letters, 36(8).
Lai, S. Y. J., Y. T. Hsiao and F.-C. Wu (2017), Asymmetric effects of fluvial and subaqueous bedrock slopes on Gilbert delta, Journal of Geophysical Research: Earth Surface,
Lai, S. Y. J., Y. T. Hsiao and F.- C. Wu (2017), Asymmetric effects of subaerial and subaqueous basement slopes on self-similar morphology of prograding deltas, Journal of Geophysical Research-Earth Surface, 122, doi: 10.1002/2017JF004244.
Lai, S. Y. J., Y. J. Chiu and F.-C. Wu (2019), Self-similar morphodynamics of Gilbert and hyperpycnal deltas over segmented two-slope bedrock channels, Water Resources Research, doi:10.1029/2018WR023824.
Liang, M., Geleynse, N., Edmonds, D. A., & Passalacqua, P. (2015). A reduced-complexity model for river delta formation-Part 2: Assessment of the flow routing scheme. Earth Surface Dynamics, 3(1), 87.
Lintern, D. G., P. R. Hill, and C. Stacey (2016), Powerful unconfined turbidity current captured by cabled observatory on the Fraser River delta slope, British Columbia, Canada, Sedimentology, 63(5), 1041-1064.
Lorenzo-Trueba, J., V. R. Voller, T. Muto, W. Kim, C. Paola, and J. B. Swenson (2009), A similarity solution for a dual moving boundary problem associated with a coastal-plain depositional system, Journal of Fluid Mechanics, 628, 427-443.
Muto, T., and R. J. Steel (1992), Retreat of the front in a prograding delta, Geology, 20(11), 967-970.
Muto, T., and J. B. Swenson (2005), Large‐scale fluvial grade as a nonequilibrium state in linked depositional systems: Theory and experiment, Journal of Geophysical Research: Earth Surface, 110(F3).
Muto, T., and J. B. Swenson (2006), Autogenic attainment of large-scale alluvial grade with steady sea-level fall: An analog tank-flume experiment, Geology, 34(3), 161-164.
Patruno, S., & Helland-Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth-Science Reviews, 185, 202-233.
Roberts, H. H., & Sydow, J. (2003). Late Quaternary stratigraphy and sedimentology of the offshore Mahakam delta, east Kalimantan (Indonesia).
Sequeiros, O. E. (2012), Estimating turbidity current conditions from channel morphology: A Froude number approach, Journal of Geophysical Research: Oceans, 117(C4).
Sequeiros, O. E., B. Spinewine, R. T. Beaubouef, T. Sun, M. H. García, and G. Parker (2010), Characteristics of velocity and excess density profiles of saline underflows and turbidity currents flowing over a mobile bed, Journal of Hydraulic Engineering, 136(7), 412-433.
Swenson, J., V. Voller, C. Paola, G. Parker, and J. Marr (2000), Fluvio-deltaic sedimentation: A generalized Stefan problem, European Journal of Applied Mathematics, 11(05), 433-452.
Talling, P. J., J. Allin, D. A. Armitage, R. W. Arnott, M. J. Cartigny, M. A. Clare, F. Felletti, J. A. Covault, S. Girardclos, and E. Hansen (2015), Key future directions for research on turbidity currents and their deposits, Journal of Sedimentary Research, 85(2), 153-169.
Tomer, A., and T. Muto (2010), Emergence and drowning of fluviodeltaic systems during steady rise of sea level: Implication from geometrical modeling and tank experiments, Journal of the Sedimentological Society of Japan, 69(2), 63-72.
Tomer, A., T. Muto, and W. Kim (2011), Autogenic hiatus in fluviodeltaic successions: geometrical modeling and physical experiments, Journal of Sedimentary Research, 81(3), 207-217.
Turmel, D., J. Locat, and G. Parker (2012), Upstream migration of knickpoints: geotechnical considerations, in Submarine Mass Movements and Their Consequences, edited, pp. 123-132, Springer.
Turmel, D., J. Locat, and G. Parker (2015), Morphological evolution of a well‐constrained, subaerial–subaqueous source to sink system: Wabush Lake, Sedimentology, 62(6), 1636-1664.
Voller, V., J. Swenson, and C. Paola (2004), An analytical solution for a Stefan problem with variable latent heat, International Journal of Heat and Mass Transfer, 47(24), 5387-5390.
Weill, P., E. Lajeunesse, O. Devauchelle, F. Métiver, A. Limare, B. Chauveau, and D. Mouazé (2014), Experimental investigation on self-channelized erosive gravity currents, Journal of Sedimentary Research, 84(6), 487-498.
邱義叡,2016,「雙坡度岩盤影響異重流三角洲發展之研究」,1-143。
張家齊,2015,「三角洲受交替入流密度及雙坡度岩盤影響之研究」,1-163。