簡易檢索 / 詳目顯示

研究生: 李嘉蓉
Lee, Chia-Jung
論文名稱: 機載防撞系統在普通航空器之應用
TCAS Solution for General Aviation
指導教授: 林清一
Lin, Chin E.
學位類別: 碩士
Master
系所名稱: 工學院 - 民航研究所
Institute of Civil Aviation
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 77
中文關鍵詞: 空中防撞系統廣播式自動回報監視新一代航空運輸系統避讓演算普通航空器
外文關鍵詞: Traffic alert and collision avoidance, automatic dependent surveillance –broadcast, NextGen, conflict avoidance algorithm, general aviation
相關次數: 點閱:159下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 空中防撞系統已經發展多時,尤其在大型客機上的機載系統以及避讓邏輯皆趨近成熟。美國近年提倡小型運輸系統,利用普通航空器讓小區域的飛行更加便利。但隨著空域密度的提高,空中碰撞的機率亦相對提升,一套適用於普通航空器的避讓演算邏輯並配合目前技術的發展,來增進飛行安全是必須的。此研究主要探討水平避讓的模型,利用廣播式自動回報監視(ADS-B)技術,為新一代航空運輸系統(NextGen)概念下建構最短的解決碰撞距離來決定要向左或向右避讓。

    The National Airspace System (NAS) will change dramatically over the next 20 years. The demand of the airspace will increase rapidly, especially the usage of general aviation (GA), while the Small Aircraft Transport System (SATS) provides alternatives in air travel. As a result, collision avoidance system will play an important role for the aviation safety in the future. Varieties of conflict detection and resolution (CD&R) were published under two and three maneuvering dimensions. The demand of airspace increases, the probability of mid-air conflict also rises. This study focuses on efficient collision avoidance logic for GA based on ADS-B for NextGen. Heading change of horizontal resolution is more suitable for small GA flying in lower altitude in this thesis. Simulations using real flight data are tested to verify the effectiveness of the proposed algorithm.

    ABSTRACT I 摘要 II 謝誌 III CONTENT IV LIST OF FIGURES VII NOMENCLATURE X CHAPTER I 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 LITERATURE SURVEY 3 1.3 MAIN IDEA 6 1.4 THESIS OUTLINE 8 CHAPTER II 9 SYSTEM TECHNOLOGY SURVEY 9 2.1 GENERAL AVIATION 9 2.2 TCAS OVERVIEW 10 2.2.1 TCAS II 11 2.2.2 TCAS II Components 14 2.2.3 Mode S/TCAS Control Panel 16 2.2.4 Cockpit Display 17 2.3 FUTURE DEMAND FOR COLLISION AVOIDANCE SYSTEM 19 2.4 NEXT GENERATION AIR TRANSPORTATION SYSTEM (NEXTGEN) 20 2.4.1 Transformational NextGen Programs 21 2.5 ADS-B 23 2.5.1 1090ES and UAT 25 2.5.2 ADS-B Out 26 2.5.3 ADS-B In 26 2.5.4 ADS-Rebroadcast 27 2.6 REMARK 28 CHAPTER III 29 TCAS FUNDAMENTALS 29 3.1 BASIC RULES 29 3.1.1 Definition of Conflict 29 3.1.2 Collision Avoidance System Logic 29 3.2 DETECTION CONCEPT 31 3.2.1 Vertical Detection 32 3.2.2 Horizontal Detection 33 3.3 REMARK 37 CHAPTER IV 38 TCAS RESOLUTION 38 4.1 PRIORITY 39 4.2 RESOLUTION CONCEPT 41 4.2.1 Conflict Geometry 41 4.2.2 Heading Resolution 43 4.3 TURNING DYNAMIC 49 4.3.1 Centripetal Force and Bank Angle 49 4.4 REMARK 52 CHAPTER V 54 FLIGHT SIMULATION 54 5.1 CASE 1: APPROACHING HEAD-ON 56 5.2 CASE 2: CONVERGING 58 5.3 CASE 3: OVERTAKING 61 5.4 SPECIAL CASE 64 5.4.1 Model Introduction 64 5.4.2 Analysis 66 5.5 REMARK 70 CHAPTER VI 72 CONCLUSION 72 REFERENCES 74

    [1] D. Long, D. Lee, J. Johnson, and P. Kostiuk, “A Small Aircraft Transportation System (SATS) Demand Model”, Logistics Management Institute, McLean, Virginia, June, 2001.
    [2] J. E. Kuchar, and A.C. Drumm, “The Traffic Alert and Collision Avoidance System,” Lincoln Laboratory Journal, m 16.2, 2007.
    [3] T. Williamson, N. A. Spencer, “Development and Operation of the Traffic Alert and Collision Avoidance System (TCAS),” Proceedings of the IEEE, 1989, Vol. 77, pp.1735-1744
    [4] Federal Aviation Administration, “TCAS II V7.1 Introduction”, U.S. Dept. of Transportation, Feb. 28, 2011.
    [5] J.K. Kuchar, L.C. Yang. “A Review of Conflict Detection and Resolution Modeling Methods,” IEEE Transactions on Intelligent Transportation Systems 1(4), 179–189, 2000
    [6] R. Bach, C. Farrell and H. Erzberger, “An Algorithm for Level-Aircraft Conflict Resolution”, NASA Ames Research Center, Moffett Field, California, May 31, 2007
    [7] L. Peng, Y. Lin, “Study on the Model for Horizontal Escape Maneuvers in TCAS”, IEEE Transaction on Intelligent Transportation Systems, Vol. 11, No. 2, Jun. 2010.
    [8] H. Erzberger, K. Heere. “Algorithm and Operational Concept for Resolving Short-range Conflicts,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 224.2 (2010): 225-243.
    [9] R. Chamlou, “Design Principles and Algorithm Development for Two Types of NextGen Airborne Conflict Detection and Collision Avoidance.” IEEE/AIAA Integrated Communications Navigation and Surveillance Conference (ICNS), April 2010.
    [10] Y. Kim, S. Lee, K. Lee, J. Y. Kang, “A Development of 3-D Resolution Algorithm for Aircraft Collision Avoidance,” International Journal of Aeronautical and Space Sciences, 14.3, 2013, pp. 272-281.
    [11] R. A. Paielli, “Modeling Maneuver Dynamics in Air Traffic Conflict Resolution,” Journal of guidance, control, and dynamics, 26.3, 2003, pp. 407-415.
    [12] Federal Aviation Administration, “NextGen Implementation Plan 2013”, U.S. Dept. of Transportation.
    [13] Federal Aviation Administration, “NextGen and the Environment”, U.S. Dept. of Transportation.
    [14]G. Xiao, Y. Xu, C. Dai, Z. Jing, and J. Wu, “A Selection Algorithm for Conflict Aircrafts and Performance Analysis Based on ADS-B,” Digital Avionics Systems Conference (DASC), IEEE/AIAA 30th, IEEE, 2011.
    [15] J. E. Olszta and W. A. Olson, “Characterization and Analysis of Traffic Alert and Collision Avoidance Resolution Advisories Resulting from 500' and 1,000' Vertical Separation,” USA/Europe Air Traffic Management Research and Development Seminar, Berlin, Germany, 2011.
    [16] C. E. Lin, Y. Y. Wu, “Collision Avoidance Solution for Low Altitude Flights”, Proceedings of the Institution of Mechanical Engineers, Part G, Journal of Aerospace Engineering, Vol. 225, 2011, pp. 779-790
    [17] F. J. Lee, “TCAS Algorithm using Time and Sector Recognition for UAS”, NCKU, 2013.
    [18] K. I. Shetty, “Current and Historical Trends in General Aviation in the United States.” Dissertation, Massachusetts Institute of Technology Cambridge, MA 02139 USA, 2012.
    [19] Transforming GA: Five-Year Strategy, FAA, 2011, available on June 2014 from website:
    https://www.faa.gov/about/office_org/headquarters_offices/avs/offices/afs/afs800/media/FAA_Transform_GA_Safety_Strategy.pdf
    [20] C. R. Spitzer, C. Spitzer, Digital Avionics Handbook, CRC Press, 2000.
    [21] TCAS II CAS 67A Pilot's Guide Honeywell Collision Avoidance System, Honeywell Co, Ltd, 2004.
    [22] R. Chamlou, “Future Airborne Collision Avoidance—Design Principles, Analysis Plan and Algorithm Development,” IEEE/AIAA 28th Digital Avionics Systems Conference, DASC'09, 2009
    [23] Better Collision Avoidance with NextGen, available in June 2014 from website: http://www.faa.gov/nextgen/snapshots/stories/?slide=27
    [24] Next Generation Air Transportation System (NextGen), available in June 2014 from website:
    http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110014967.pdf
    [25]Federal Aviation Administration, “System Wide Information Management,” U.S. Dept. of Transportation.
    [26] Federal Aviation Administration, “Common Support Services-Weather,” U.S. Dept. of Transportation.
    [27] Federal Aviation Administration, “Collaborative Air Traffic Management Technologies,” U.S. Dept. of Transportation.
    [28] Federal Aviation Administration, “NAS Voice System, “U.S. Dept. of Transportation.
    [29] Z. Xiang, W. J. Pan and J. Luo, “Application of Automatic Dependent Surveillance-Broadcast in the Training for Air Traffic Controller.” Applied Mechanics and Materials 209 (2012): 775-778.
    [30] Federal Aviation Administration, “AC 90-114 Automatic Dependent Surveillance-Broadcast (ADS-B) Operations”, U.S. Dept. of Transportation.

    下載圖示 校內:2017-07-16公開
    校外:2017-07-16公開
    QR CODE