簡易檢索 / 詳目顯示

研究生: 侯展鈞
Hou, Zhan-Jun
論文名稱: 延伸緩坡方程式模擬波浪溯升
An Extension of Mild-Slope Equation for Simulating Wave Run-up
指導教授: 許泰文
Hsu, Tai-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 48
中文關鍵詞: 耦合模式緩坡方程式淺水波方程式波浪溯升
外文關鍵詞: Decoupled model, Mild-Slope Equation, Shallow-water equation, Wave Run-up
相關次數: 點閱:166下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用演進型緩坡方程式(evolution equation for mild-slope equation,EEMSE )之數值模式結合線性長波方程式(linear shallow-water wave equations)之耦合方程式以模擬波浪碎波後於岸上之溯升現象。本研究藉由Mase等人(1984) 及Hsu等人(2012) 的溯升實驗數據進行分析,利用反向推估法推求出溯升模式要輸入的波高值與外海入射波高值兩者間的迴歸公式,以利於模式使用。
    本文應用模式模擬一維和二維均勻斜坡地形,並將模式的計算結果與原來未考慮溯升的演進型緩坡方程式比較兩者間的差異性。本文在波浪條件不變的情況下,模擬底床坡度1/3、1/4、1/5、1/10、1/20及1/30的波浪溯升,由結果發現在相同的波浪條件下,隨著底床坡度趨緩,溯升高度就越低。本文進一步以大鵬灣實際現場地形進行模擬,由計算結果可得知波浪由外海向近岸傳遞,於岸上溯升的所有區域範圍。

    A numerical model was developed for simulating wave run-up after wave breaking over a sloping beach. This model is decoupled by the wave model of EEMSE (evolution equation for mild-slope equation) as well as the wave run-up model of LSWWE (linear shallow-water wave equations). Experimental data of Mase et al. (1984) and Hsu et al. (2012) were used to perform the regression analysis. The result lead to a regression formula which was applied as the input wave conditions for the prediction of wave run-up as LSWWE was used.
    The model was applied to simulate wave run-up for the cases of wave propagation are 1D sloping beach and 2D planar beach. Numerical results showed that the present model is capable of describing the dynamic process of wave run-up. It is found that the wave run-up increases with the decrease of beach slope. A case study was successfully performed at Dapengwan for practical applications.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 符號說明 IX 第一章 緒論 1 1-1 研究動機與目的 1 1-2 前人研究 2 1-2-1 波浪溯升 2 1-3 本文組織 3 第二章 理論基礎 5 2-1 溯升模式 5 2-1-1控制方程式 5 2-1-2邊界條件與起始條件 6 2-2 演進型緩坡方程式(EEMSE) 6 2-2-1 控制方程式 6 2-2-2 邊界條件 8 2-2-3 起始猜測值 11 第三章 數值模式 12 3-1 溯升模式數值方法 12 3-2 EEMSE數值方法 14 3-3 模組計算執行流程 16 3-4 溯升模式輸入波高值之決定 18 3-5 EEMSE模式與溯升模式模擬結果之銜接 22 第四章 結果與討論 25 4-1 均勻斜坡地形EEMSE模式與加入溯升模式後之波高分佈結果比較 25 4-1-1 一維斷面均勻斜坡地形比較 25 4-1-2 二維均勻斜坡地形比較 35 4-2 實際現場波高分佈及溯升結果 38 第五章 結論與建議 44 5-1 結論 44 5-2 建議 45 參考文獻 46

    1. Dally, W.R., R.G. Dean and R.A. Dalrymple, “Wave Height Variation Across Beaches of Arbitrary Profile,” Journal of Geophysical Research, Vol. 90 (C6), pp. 11917-11927 (1985).
    2. Goda, Y., “Irregular Wave Deformation in the Surf Zone,” Coastal Engineering In Japan, Vol. 18, pp. 13-26 (1975).
    3. Hashimoto, H. "An experimental study on irregular wave run-up on a coastal dike." Coastal Engineering in Japan, Vol. 16, pp. 123-136 (1973).
    4. Hsu, T.-W., Liang, S.-J., Young, B.-D., and Ou, S.-H., "Nonlinear run-ups of regular waves on sloping structures." Natural Hazards and Earth System Sciences, pp. 3811-3820 (2012).
    5. Hughes, S. A. "Estimation of wave run-up on smooth, impermeable slopes using the wave momentum flux parameter." Coastal Engineering, Vol.51, pp. 1085-1104.(2004)
    6. Hunt, I. A. "Design of seawalls and breakwaters." Joural of Waterway Harbors Division, ASCE, WW3, pp. 123-152 (1959).
    7. Kobayashi, N., Otta, A. K. and Roy, I., "Wave Reflection and Run‐Up on Rough Slopes." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol.113, pp. 282-298 (1987).
    8. Li, B., "An Evolution Equation for Water Waves, " Coastal Engineering, Vol. 23, pp. 227-242 (1994a).
    9. Lin, P., Chang, K.-A., and Liu, P., L.-F., "Runup and rundown of solitary waves on sloping beaches." Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol.125, pp. 247-255 (1999).
    10. Lin, C.Y., Huang, C.J., and Chen, C.H., "Simulation of the wave run-up and overtopping near a seawall using particle level set method, " The 20th Int. Offshore and Polar Eng. Conf. 1-6 (2010)
    11. Lynett, P., Wu, T.R. and Liu, P. L.F, "Modeling wave runup with depth-integrated equations," Coastal Engineering, Vol. 46, pp. 89-107 (2002).
    12. Mase, H. and Iwagaki Y, "Run-up of random wave on gentle slopes, " Proceedings of the 19th Conference on Coastal Engineering, ASCE, pp. 593-609 (1984).
    13. Mase, H. "Random wave run-up height on gentle slope." Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 115, No. 5, ASCE, pp. 649-661 (1989).
    14. Matteo, A. and Brocchini, M. "Maximum run-up, breaking conditions and dynamical forces in the swash zone: a boundary value approach. " Coastal Engineering, Vol. 55(9), pp. 732-740 (2008).
    15. Shuto, N., “Nonlinear long waves in a channel of variable section,” Coastal Engineering in Japan, Vol. 17, pp. 1-12 (1974).
    16. Shuto, N. and Goto, C., "Run-up of tsunamis by linear and nonlinear theories," Proceedings of 17th International Conference on Coastal Engineering, ASCE, pp.695-707 (1980).
    17. Synolakis, C. E. "The runup of long waves. " Ph.D. Thesis, California Institute of Technology, Pasadena, California (1986).
    18. Synolakis, C. E. "The runup of solitary waves." Journal of Fluid Mechanics, Vol. 185, pp. 523-545 (1987).
    19. Tsai, C. P., Chen, H. B., Hsu, J. R.-C., “Calculations of Wave Transformation Across the Surf Zone,” Ocean Engineering, Vol. 28, pp. 941-955 (2001).
    20. 楊春生、湯麟武、邵建林,「臺灣東北部海岸地震海嘯數值推算之研究」,行政院國家科學委員會,防災科技研究報告72-23號 (1983)。
    21. 溫志中,「修正緩坡方程式之研發與應用」,博士論文,國立成功大學 (2001)。
    22. 劉冠亨、楊立帆、陳志欣、林俊遠、黃清哲,「週期波與斜坡底床之交互作用研究」,第34 屆海洋工程研討會論文集,第249-254頁 (2012)。

    下載圖示 校內:2018-07-29公開
    校外:2018-07-29公開
    QR CODE