研究生: |
沈志華 Shen, Chich-Hwa |
---|---|
論文名稱: |
具陣列式加熱器與溫度感測器之熱晶片的製作及微尺寸衝擊冷卻之熱流量測與分析 THERMAL CHIP FABRICATION WITH ARRAYS OF SENSORS AND HEATERS WITH ANALYSIS AND MEASUREMENTS OF MICRO SCALE IMPINGEMENT COOLING FLOW AND HEAT TRANSFER |
指導教授: |
高騏
Gau, Chie |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 英文 |
論文頁數: | 168 |
中文關鍵詞: | 微機電製造 、熱晶片 、微衝擊冷卻熱傳 、微尺寸衝擊流 |
外文關鍵詞: | micro-impingement cooling heat transfer, thermal chip, MEMS fabrication, micro-scale impinging jet |
相關次數: | 點閱:86 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微衝擊冷卻模式對於微機電系統或高熱流通量之積體電路系統,因微小面積所產生熱點(hot spot)之散熱問題有極高的應用潛力。然而相關研究相當缺乏,且基於矽基材之高熱導係數所造成大量之側向熱傳,將使晶片局部點的熱傳分佈不易求得;詳細之流場結構也無研究資料。因此如何設計與製造實驗用晶片,以及量測與分析微衝擊冷卻熱流現象為本研究之主要目的。
本研究以實驗方法探討微氣體噴流衝擊等熱通量加熱晶片之流場與熱傳現象。微噴流是由具微米矩形噴嘴之小型風洞所提供,加熱面則是由熱晶片提供,其與噴流保持垂直方向並以等熱通量均勻加熱,而另一壁面則保持絕熱。由熱晶片加熱器所設定之加熱量、晶片表面局部點及流體溫度的量測,經牛頓冷卻定律計算,可求得晶片表面局部點熱傳係數分佈。微噴嘴是利用KOH對矽之非等向性濕蝕刻加工方式製作出口:長2000µm、寬各為200µm、100µm及50µm之三組矩形噴嘴。熱晶片則利用晶背之機械研磨及TMAH矽濕蝕刻之加工方式將矽基材厚度減至40µm以降低矽基材所造成之熱損失;加熱器與溫度感測器則以離子佈植技術在複結晶矽材料內添加不同濃度之硼離子,並經乾蝕刻塑型而成。實驗晶片在設計、製作及封裝都有特殊的考量使得晶片的良率可達百分百。
實驗結果發現微噴流在剪流層的不穩定性擾動,無足夠能量生成大尺度渦流結構,此現象亦可由噴流中心線速度、紊流強度、頻譜分析及停滯點熱傳係數的量測結果得到相互印證。當微噴流之層流區衝擊熱晶片時,其衝擊後之壁面流會在晶片表面形成具穩定與結構性之大尺度對稱渦流,可因此提高加熱壁面之熱傳效率。以上所討論之現象於大尺寸衝擊冷卻過程則從未發現。最後本研究成功的將實驗結果針對停滯點、局部點及平均熱傳係數建立經驗關係式,可供微機電系統或CPU散熱設計的參考。
Micro-scale impingement cooling process has a very high potential application in cooling a micro-thermal or a high heat flux IC circuits system due to its capability of removing a large amount of heat over a small micro-area. Large-scale impingement cooling flow and heat transfer process has been studied extensively in the past and has wide application in various thermal systems.
However, in micro-scale system, these kinds of study are relatively few. Due to large axial (parallel to the chip surface) conduction of heat in their chip, the local heat transfer and their analysis along the chip could not be obtained. It is noted that the large conduction of heat in the thermal chip is attributed to large thermal conductivity of the wafer material. In addition, detailed flow structure for the micro-impinging jet was also not observed. It appears that a novel design and fabrication for the thermal chip is necessary. This will allow for measurements and analysis of local heat transfer along the heated chip and observation of the flow process for the impinging jet. The observation of the impinging jet is necessary for the understanding of the micro-scale cooling process along the chip.
Therefore, the first objective of this work is to design and fabricate a heated thermal chip that can be impinged and cooled by a single jet from a micro-slot nozzle. For the current chip, it is necessary to design a chip that can reduce the axial (parallel to the chip surface) conduction along the chip due to the large variation in the temperature distribution in the axial direction. Both three sets of micro-heaters and arrays of micro-temperature sensors that are made of polysilicon doped with different concentrations of Boron are deposited by LPCVD on the same side of a Si(100) wafer. The back side of this wafer is ground first and etched with TMAH later to make a 40µm thick of chip. At the same time, the sensors and the heaters in the front side have to avoid the attack by TMAH. Techniques involved in the fabrication process will be presented and discussed. In this way, the axial conduction of heat in the wafer can be significantly reduced. Once the backside of the chip is well insulated, a uniform wall heat flux condition q can be obtained and the local heat transfer coefficient h can be found from the Newton cooling law, i.e. h = q/(Tw –Tj) based on the temperatures measured with the arrays of sensors on the heated chip and the cooling flow temperatures Tj. The peculiar fabrication procedure presented can reach a chip yield of 100%, and every one of the sensors and heaters on the chip is in good condition. The nozzle is etched on Si wafer with KOH and is made rectangular. It has 2000µm in length. The width of the nozzle has three different sizes, i.e. 200µm, 100µm and 50µm, that can be accurately measured.
From the flow visualization of micro-jet, there are no coherence structures of vortices formation in the shear layer as shown in the large-scale jet. It appears that the instability waves in the shear layer have not enough energy to roll up into ring vortices for the micro-scale jet. This is also confirmed in the experiment for measurements of the center line velocity, turbulent intensity and spectra of the velocity fluctuations for the micro-jet, and the location for the occurrence of maximum stagnation point Nusselt number on the heated wall of micro-impingement cooling process. From the visualization of micro-impinging jet, a peculiar phenomenon of two circulation cells appeared in the impinging wall, they were found to significantly enhance the heat transfer Nusselt numbers along the wall. This phenomenon has also not been found in large-scale impingement cooling process before. Finally, the stagnation point Nusselt number, the average Nusselt number and the local Nusselt number have been successfully measured and discussed. They are well correlated in terms of relevant nondimensional parameters, within the experimental range covered.
Macro-Scale Free and Impinging Jets
1.Ashforth-Frost, S., Jambunathan K and Whitney C. F., “Velocity and turbulence characteristics of a semi-confined orthogonally impinging slot jet”, Experimental Thermal and Fluid Science, 14 (1), pp.60-67, 1997.
2.Baughn, J. W. and Shimizu, S., “Heat Transfer Measurement from a Surface with Uniform Heat Flux and an Impinging Jet”, ASME Journal of Heat Transfer, Vol. 111, pp. 1097-1100, 1989.
3.Becker, H. and Massaro, T. A., “Vortex Evolution in a Round Jet”, J. Fluid Mech., Vol. 31, Part 3, pp. 435-448, 1968.
4.Becko, Y., “Impingement Cooling – A Review”, Von Karman Institute for Fluid Dynamics, Lecture series 83, 1976.
5.Chan T. L., Leung, C. W., Jambunathan, K., Ashforth-Frost, S., Zhou, Y. and Liu, M. H., “Heat Transfer Characteristics of a Slot Jet Impinging on a Semi-Circular Convex Surface”, International Journal of Heat and Mass Transfer, Vol. 45, pp. 993-1006, 2002.
6.Chao, Y.C., Jeng, M.S. and Han, J.M., “Visualization and Image Processing of an Acoustically Excited Jet Flow “, Experiments in Fluids, Vol. 12, pp. 29-40, 1991.
7.Cornaro, C., Fleischer A. S., and Goldstein, R. J., “Flow Visualization of A Round Jet Impinging on Cylindrical Surfaces”, Experimental Thermal and Fluid Science, 20, pp. 66-78, 1999.
8.Corrsin S. “Investigation of flow in an axially symmetric heated jet of air”, NACA Wartime Reports, Series WR-94, 1943.
9.Didden, N., and Ho C. M., “Unsteady Separation in a Boundary Layer Produced by an Impinging Jet”, Journal of Fluid Mechanics, Vol. 160, pp. 235-236, 1985.
10.Donaldson, C. D. and Snedeker, R. S., “A Study of Free Jet Impingement, Part 1: Mean Properties of Free Impinging Jets”, Journal of Fluid Mechanics, Vol. 45, Part 2, pp. 281-319, 1971.
11.Donaldson, C. D., Snedeker, R. S. and Margolis D. P., “A Study of Free Jet Impingement, Part2: Free Jet Turbulence Structure and Impingement Heat Transfer”, Journal of Fluid Mechanics, Vol. 45, Part3, pp. 477-512.
12.Fondse, H., Leijden, S., and Ooms, G., “On the Influence of the Exit Conditions on the Entrainment Rate in the Development Region of a Free, Round, Turbulent Jet”, Appl. Sci. Res., Vol. 40, pp. 355-375, 1983.
13.Gardon, R. and Akfirat, J. C., “Heat Transfer Characteristics of Impinging Two Dimensional Air Jets”, ASME Journal of Heat Transfer, Vol. 88, pp. 101-108, 1966.
14.Gardon, R. and Akfirat, J. C., “The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets”, International Journal of Heat and Mass Transfer, Vol. 8, pp. 1261-1272, 1965.
15.Gardon, R. and Carbonpue, J., “Heat Transfer Between a Flat Plate and Jets of Air Impinging on It”, in International Developments in Heat Transfer, Proceeding of the 2nd International Heat Transfer Conference, American Society of Mechanical Engineers, New York, pp. 454-460,1963.
16.Gau, C. and Chung, C. M., “Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process”, ASME Journal of Heat Transfer, Vol.113, pp. 858-864, 1991.
17.Gau, C., Sheu, W. Y. and Shen, C. H., “Impingement Cooling Flow and Heat Transfer Under Acoustic Excitation”, ASME Journal of Heat Transfer, Vol.119, pp. 810-817, 1997.
18.Glaser, H., Chem.-Ing.-Tech. 34, 200, 1962.
19.Glaser, H., Melliand Textilber. 44, 292 and 400, 1963.
20.Glauert, M. B., Journal of Fluid Mechanics, 1, 625, 1956.
21.Goldstein, R. J. and Timmers, J. F., “Visualization of Heat Transfer from Arrays of Impinging Jets”, International Journal of Heat and Mass Transfer, Vol. 25, pp.1857-1868., 1982.
22.Han, J. M., “Manipulation of a Circular Jet by Acoustic Excitation”, Ph.D. thesis, National Cheng Kung University, Tainan, Taiwan, 1991.
23.Ho, C. M., and Huang, L. S., “Subharmonics and Vortex Merging in Mixing Layers”, Journal of Fluid Mechanics, Vol. 119, pp. 443-473, 1982.
24.Ho, C. M., and Nosseir, N. S., “Dynamics of an Impinging Jet. Part 1. The Feedback Phenomenon”, Journal of Fluid Mechanics, Vol. 105, pp. 119-141, 1981.
25.Hoogendoorn, C. J., “The Effect of Turbulence on Heat Transfer at A Stagnation Point”, International Journal of Heat and Mass Transfer, Vol. 20, pp. 1333-1338, 1977.
26.Hrycak, P., “Heat Transfer form Round Impinging Jets to a Flat Plate”, International Journal of Heat and Mass Transfer, Vol. 25, pp. 1857-1868, 1983.
27.Hsiao, F.B. and Ho, C.M., "The Sinuous Mode and Varicose Mode in a 2-D Jet", Bulletin of the American Physical Society, Providence, Nov. 1984, Vol. 29, pp. 1519, 1984.
28.Hsiao, F.B., "Small Scale Transition and Preferred Mode in an Initially Laminar Plane Jet", Ph.D. Dissertation, Dept. of Aerospace Engineering, University of Southern California, Los Angeles, 1985.
29.Ichimiya, K. and Hosaka, N., “Experimental Study of Heat Transfer Characteristics due to Confined Impinging Two-Dimensional Jets”, Experimental Thermal and Fluid Science, Vol. 5, pp.803-807, 1992.
30.Jambunatham, K., Lai, E., Moss, M.A., and Button, B.L., “A Review of Heat Transfer Data for Single Circular Jet Impingement”, Int. J. Heat Fluid Flow, Vol. 13, No. 2, pp. 106-115, 1992.
31.Laufer, J., and Kaplan, R. E., “On the Generation of Jet Noise”, AGARD-CP-131, paper 21, 1974.
32.Lee, J., and Lee, S. J., “The Effect of Nozzle Configuration on Stagnation Region Heat Transfer Enhancement of Axisymmetric Jet Impingement”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 3497-3509, 2000.
33.Lee, J. and Lee, S. J., “The Effect of Nozzle Aspect Ratio on Stagnation Region Heat Transfer Characteristics of Elliptic Impinging Jet”, International Journal of Heat and Mass Transfer, Vol. 43, pp. 555-575, 2000.
34.Lin, Z. H., Chou, Y. J. and Hung, Y. H., “Heat Transfer Behaviors of a Confined Slot Jet Impingement”, International Journal of Heat and Mass Transfer, Vol. 40, No. 5, pp. 1095-1107, 1997.
35.Martin, H., “Heat and Mass Transfer between Impinging Gas Jet and Solid Surfaces”, Advances in Heat Transfer, Vol. 13, pp. 1-60, 1977.
36.Mattingly, G. E. and Chang, C. C., “Unstable waves on an axisymmetric jet column”, Journal of Fluid Mechanics, Vol. 65, pp. 541-560, 1974.
37.Michalke, A., “On Spatitally Growing Disturbances in an Invicid Shear Layer”, Journal of Fluid Mechanics, Vol. 23, part3, pp.521-544, 1965.
38.Michalke, A., and Fuchs, H. V., “On Turbulence and Noise of an Axisymmetric Shear Flow”, Journal of Fluid Mechanics, Vol. 70, pp.179-205, 1975.
39.Paterson, R. A., “Influence of Wave Dispersion on Vortex Pairing in a Jet”, Journal of Fluid Mechanics, Vol. 89, pp.469-495, 1978.
40.Popiel, C. O., and Boguslakwski, L., “Effect of Flow Structure on the Heat or Mass Transfer on a Flat Plate in Impinging Round Jet”, 2nd UK National Conference on Heat Transfer, University of Strathclyde, UK, September 14-16, 1. pp.663-685, 1988.
41.Popiel, C. O., and Trass, O., “The effect of ordered structure of turbulence on momentum, heat, and mass transfer of impinging round jets”, Proc. 7th International Heat Transfer Conference., Munchen, Germany, September 6-10, 6, pp. 141-146, 1982.
42.Popiel, C. O., and Trass, O., “Visualization of a Free and Impinging Round Jet”, Experimental Thermal and Fluid Science, 4, pp. 253-264, 1991.
43.Sato, H., “The stability and transition of a two-dimensional jet”, Journal of Fluid Mechanics, Vol. 7, pp.53-80, 1960.
44.Schlunder, E. U., and Gnielinski, V., “Heat and Mass Transfer between Surfaces and Impinging Jets”, Chem. Ing. Tech., Vol.39, pp.578-584, 1967.
45.Schrader, H., VDI-Forschungsh, 484, 1961.
46.Sibulkin, M., “Heat Transfer near the Forward Stagnation Point of a Body or Revolution”, J. Aeronautical Sci., August, 1952.
47.Sparrow E. M., and Wang T. C., “Impingement Transfer Coefficients Due to Initially Laminar Slot Jets”, International Journal of Heat and Mass Transfer, Vol. 18, pp. 597-605, 1975.
48.Yokobori, S., Kasagi, N., Hirata, M., Nakamaru, M., and Haramura, Y., ”Characteristic Behavior of Turbulence and Transport Phenomena at the Stagnation Region of an Axi-Symmertrical Impinging Jet”, Proc. 2nd Symp. Turb. Shear Flows, London, UK, 4, 4.12-4.17, 1979.
Micro-Scale Free and Impinging Jets
49.Coe, D. J., Allen, M. G., Trautman, M. A., and Glezer, A., “Micro machined Jets for Manipulation of macro flows”, Workshop, Hilton Head, SC., 1994.
50.Coe, D. J., Allen, M. G., Smith, B. L. and Glezer, A., “Addressable Micromachined Jet Arrays”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensor IX. Stockholm, Sweden, June, pp.25-29, 1995.
51.Sethuram, S., Samimy, M. and Lempert, W, “Planar Doppler Velocimetry in Supersonic Micro Flow”, AIAA paper, 2002-0690, January, 2002.
52.Smith, B. L. and Glezer, A., “Jet Vectoring using synthetic jets”, Journal of Fluid Mechanics, Vol. 458, pp.1-34, 2002.
53.Wang, E. N., Zhang, L., Jiang, L., Koo, J. M., Goodson, K. E. and Kenny, T. W., “Micromachined Jet Arrays for Liquid Impingement Cooling of VLSI Chips”, Solid-State Sensor, Actuator and Microsystems Workshop, pp. 46-49, 2002.
54.Wu, S., Mai, J., Tai, Y. C. and C. M. Ho., “Micro Heat Exchange by using MEMS Impinging Jets”, Proceedings of the IEEE Micro Electro Mechanical Systems, pp.171-176, 1999.
Sensors and Heaters
55.Bendeković, Z., Biljanović, P. and Grgec, D., “Polysilicon Temperature Sensor”, Mediterranean Electrotechnical Conference, Vol.1, pp. 362-366, 1998.
56.Huang, J. B., Ho, C. M., Jiang, F. and Tai, Y. C., “Dynamic behavior and application of micro sensors with negative temperature coefficient”, Instrumentation and Measurement Technology Conference IMTC-96, Vol. 2, pp. 1191 -1194, 1996.
57.Lane, W. A., and Wrixon, G. T., “The Design of Thin-Film Polysilicon Resistors for Analog IC Applications”, IEEE Transactions on Electron Device, Vol. 36, No. 4, pp. 738-744, 1989.
58.Lee, K., Kang, H., Jang, Y. and Lim, S., “Optimization of Boron Doped Polysilicon Resistors”, Solid-State and Integrated Circuit Technology 4th International Conference, pp. 659 –661, 1995.
59.Lu, N.C.C., Gerzberg, L. and Meindl, J. D., “A Quantitative Model of The Effect of Grain Size On The Resistivity of Polycrystalline Silicon Resistors”, IEEE Electron Device Letters, Vol. EDL-1, No. 3, pp. 38-41, 1980.
60.Obermeier, E. and Kopystynski, P., “Polysilicon as a Material for Microsensor Applications”, Sens. Actuators A 30, pp. 149-155, 1992.
61.Picker, K. A.,” Ion Implantation in Silicon”, Applid Solid State Science, Vol. 5, Academic, New York, 1975.
62.Seto, J. Y. W., “The electrical properties of polycrystalline silicon films”, Journal of Applied Physics, Vol. 46, No. 12, pp. 5247-5254, 1975.
63.Suzuki, K., Sudo, R., Tada, Y., Tomotani, M., Feudel, T. and Fichtner, W., “Comprehensive Analytical Expression for Dose Dependent Ion-Implanted Impurity Concentration Profiles, Solid State Electronics, Vol. 42, No. 9, pp. 1671-1678, 1998.
64.Volkein, F. and Baltes, H., “Thermoelectric Properties of Polysilicon Films Doped with Phosphorus and Boron”, Sensors and Materials, Vol. 3, No. 6, pp. 325-334, 1992.
65.Wolf, H. F., “Silicon semiconductor data”, Signetics Corporation, pp. 50-51.
66.Yang, G. S. and Aslam, D. M., “Single-Structure Heater and Temperature Using a P-type Polycrystalline Diamond Resistor”, IEEE Electron Device Letters, Vol. 17, No. 5, pp. 250-252, 1996.
Silicon Wet Etch
67.Babaei, J. H., Kwok, C. Y. and Huang, R. S., “An Integrable Nozzle for Monolithic Microfluidic Devices”, Sens. Actuators A 65, pp. 221-227, 1998.
68.Brida, S., Faes, A., Guarnieri, V., Giacomozzi, F., Margesin, B., Paranjapec, M., Pignatel, G. U. and Zen, M., “Microstructure Etched in Doped TMAH Solutions”, Microelectronic Engineering, 53, pp. 547-551, 2000.
69.Chen, P. H., Peng, H. Y., Hsieh, C. M. and Chyu, M. K., “The Characteristic Behavior of TMAH Water Solution for Anisotropic Etching on both Silicon Substrate and SiO2 Layer”, Sens. Actuators A 93, pp. 132-137, 2001.
70.Chou, B. C. S., Chen, C. N. and Shie, J. S., “Micromachining on (111) Oriented Silicon”, Sens. Actuators A 75, pp. 271-277, 1999.
71.Divan, R., Moldovan, N. and Camon, H., “Roughness and Smoothing Dynamics during KOH Silicon Etching”, Sens. Actuators A 74, pp. 18-23, 1999.
72.French, P. J., Nagao, M. and Esashi, M., “Electrochemical Etched-Stop in TMAHW without Externally Applied Bias”, Sens. Actuators A 56, pp. 279-280, 1996.
73.Frühauf, J. and Hannemann, B., ”Wet Etching of Undercut Sidewalls in {001}-Silicon”, Sens. Actuators A 79, pp. 55-63, 2000.
74.Klaassen, E., Reay, R. and Kovacs, G.., “Diode-Based Thermal R.M.S. Converter with On-Chip Circuitry Fabricated using CMOS Technology”, Sens. Actuators A 52, pp. 33-40, 1996.
75.Landsberger, L. M., Naseh, S., Kahrizi, M. and Paranjape, M., ”On Hillocks Generated During Anisotropic Etching of Si in TMAH”, J. Microelectromechanical Systems, Vol. 5, No. 2, pp.106-116, 1996.
76.Lian, K., Stark, B., Gundjach, A. M. and Walton, A. J., “Aluminium Passivation for TMAH Based Anisotropic Etching for MEMS Applications”, Electronics Letters, Vol. 35, No. 15, pp. 1266-1267, 1999.
77.Mescheder, U. M. and Koetter, C., “Optical Monitoring and Control of Si Wet Etching”, Sens. Actuators A 76, pp. 425-430, 1999.
78.Müller, R., Obreja, P., Manea, E. and Nastase, N., “An Investigation of Silicon Thin Membranes for MOMS”, IEEE, pp. 345-348, 1998.
79.Obreja, P., Müller, R. and Manea, E., “Silicon Elastometer as a Protective Layer in 3D Microfabrication of Micro-Opto-Electro-Mechanical Systems”, Sens. Actuators A 74, pp. 24-26, 1999.
80.Petersen, K. E., “Silicon as a Mechanical Material”, Proceedings of the IEEE, Vol. 70, pp.420-457, 1982.
81.Price, J. B., “Anisotropic Etching of Silicon with KOH-H2O-Isopropyl Alcohol”, Semiconductor Silicon, Chicago, IL, pp. 339-353, 1973.
82.Sakaino, K. and Adachi, A., “Study of Si(100) Surfaces Etched in TMAH Solution”, Sens. Actuators A 88, pp. 71-78, 2001.
83.Sarro, P. M., Brida D., Vlist, W. V. D. and Brida, S., “Effect of Surfactant on Surface Quality of Silicon Microstructures Eched in Saturated TMAHW Solutions”, Sens. Actuators A 85, pp. 340-345, 2000.
84.Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y. and Yamamoto, M., “Characterization of Orientation-Dependent Etching Properties of Single-Crystal Silicon: Effects of KOH Concentration”, Sens. Actuators A 64, pp. 87-93, 1998.
85.Sato, K., Shikida, M., Yamashiro, T., Asaumi, K., Iriye, Y. and Yamamoto, M., “Anisotropic Etching Rates of Single-Crystal Silicon for TMAH Water Solution as A Function of Crystallographic Orientation”, IEEE, pp.556-561, 1998.
86.Sato, K., Shikida, M., Yamashiro, T., Tsunekawa, M. and Ito, S., “Roughness of Single-Crystal Silicon Surface Etched by KOH Water Solution”, Sens. Actuators A 73, pp. 122-130, 1999.
87.Schnakenberg, U., Benecke, W. and Lange, P., “TMAHW Etchants for Silicon Micromachining”, Tech. Dig. 6th Int. Conf. Solid States Sensors and Actuators, pp.815-818, 1991.
88.Seidel, H., Csepregi, L., Heuberger, A. and Baumgartel, H., “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions-Part I. Orientation Dependence and Behavior of Passivation Layers”, J. Electrochem. Soc., Vol. 137, pp.3612-3626, 1990.
89.Sekimura, M., ”Anisotropic Etching of Surfactant-Added TMAH Solution”, IEEE, pp. 650-655, 1999.
90.Shikida, M., Masuda, T., Unchikawa, D. and Sato, K., “Surface Roughness of Single-Crystal Silicon Etched by TMAH Solution”, Sens. Actuators A 90, pp. 223-231, 2001.
91.Shikida, M., Sato, K., Tokoro, K. and Uchikawa, D., “Differences in Anisotropic Etching Properties of KOH and TMAH Solutions”, Sens. Actuators A 80, pp. 179-188, 2000.
92.Shikida, M., Sato, K., Tokoro, K. and Uchikawa, D., ”Comparison of Anisotropic Etching Properties between KOH and TMAH Solutions”, IEEE, pp. 315-320, 1999.
93.Sonphao, W. and Chaisirikul S., “Silicon Anisotropic Etching of TMAH Solution”, IEEE, 2049-2052.
94.Steinsland, E., Finstad, T. and Hanneborg, A., “Etch Rate of (100), (111) and (110) Single Crystal Silicon in TMAH Measured in situ by Laser Reflectance Interferometry”, Sens. Actuators A 86, pp. 73-80, 2000.
95.Steinsland, E., Nese, M., Hanneborg, A., Bernstein, R. W., Sandmo, H. and Kittilsland, G.., “Boron Etch-Stop in TMAH Solutions”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX Stockholm, Sweden, pp. 25-29, 1995.
96.Tabata, O., Asahi, R., Funabashi, H., Shimaoka, K., and Sugiyama, S., “Anisotropic Etching of Silicon in TMAH Solutions”, Sensors and Actuators, Vol. A34, No.1, pp.51-57, 1992.
97.Tabata, O., “Anisotropic and Selectivity Control of TMAH”, IEEE, pp.229-233, 1998.
98.Tabata, O., “PH-Controlled TMAH Etchants for Silicon Micromachining”, Sens. Actuators A 86, pp. 335-339, 1996.
99.Tabata, O., “PH-Controlled TMAH Etchants for Silicon Micromachining”, The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX Stockholm, Sweden, pp. 83-86, 1995.
100.Tanaka, H., Abe, Y., Yoneyama, T., Ishikawa, J., Takenaka, O. and Inoue, K., “Effects of Small Amount of Impurities on Etching of Silicon in Aqueous Potassium Hydroxide Solutions”, Sens. Actuators A 82, pp. 270-273, 2000.
101.Tea, N. H., Milanović, V., Zincke, C. A., Suehle, J. S., Gaitan, M., Zaghloul, M. E. and Geist, J., “Hybrid Postprocessing Etching for CMOS-Compatible MEMS”, J. Microelectromechanical Systems, Vol. 6, No. 4, pp.363-372, 1997.
102.Tokoro, K., Uchikawa, D., Shikida, M. and Sato, K., “Anisotropic Etching Properties of Silicon in KOH and TMAH Solutions”, IEEE, pp.65-70, 1998.
103.Tsaur, J. Y., Du, C. H., and Lee, C., “Investagation of TMAH for Front-Side Bulk Micromachining Process from Manufacturing Aspect”, Sens. Actuators A 92, pp. 375-383, 2001.
104.Tuckerman, D. B. and Pease, R. F. W., “High-Performance Heat Sinking for VLSI”, IEEE Electron Device Letter, EDL-2, pp. 126-129, 1981.
105.Veenendaal, E. V., Nijdam, A. J., Suchtelen, J. V., Sato, K., Gardeniers J. G. E., Enckevort W. J. P., and Elwenspoek, M., “Simulation of Anisotropic Wet Chemical Etching using a Physical Model”, Sens. Actuators A 84, pp. 324-329, 2000.
106.Veenendaal, E. V., Sato, K., Shikida, M. and Suchtelen, J. V., “Micromorphology of Single Crystalline Silicon Surfaces during Anisotropic Wet Chemical Etching in KOH and TMAH”, Sens. Actuators A 93, pp. 219-231, 2001.
107.Veenendaal, E. V., Sato, K., Shikida, M., Nijdam, A. J., and Suchtelen, J. V., “Micro-Morphology of Single Crystalline Silicon Surfaces during Anisotropic Wet Chemical Etching in KOH: Velocity Sources Forests”, Sens. Actuators A 93, pp. 232-242, 2001.
108.Yan, G., Chan, P. C. H., Hsing, I. M., Sharma, R. K., Sin, J. K. O. and Wang, Y., “An Improved TMAH Si-Etching Solution without Attacking Exposed Aluminum”, Sens. Actuators A 89, pp. 135-141, 2001.
109.Zubel, I. and Kramowska, M., “The Effect of Isopropyl Alcohol on Etching Rate and Roughness of (100) Si Surface Etched in KOH and TMAH Solutions”, Sens. Actuators A 93, pp. 138-147, 2001.
110.Zubel, I., “Silicon Anisotropic Etching in Alkaline Solutions III: On the Possibility of Spatial Structures Forming in the Course of Si(100) Anisotropic Etching in KOH and KOH+IPA Solutions”, Sens. Actuators A 84, pp. 116-125, 2000.
111.Zubel, I., “Silicon anisotropic etching in alkaline solutions III: On the Possibility of Spatial Structures forming in the Course of Si(100) Anisotropic Etching in KOH and KOH+IPA Solutions”, Sens. Actuators A 84, pp. 116-125, 2000.
112.Zubel, I., Barycka, I., Kotowska, K. and Kramkowska, M., “Silicon Anisotropic Etching in Alkaline Solutions IV: The Effect of Organic and Inorganic Agents on Silicon Anisotropic Etching Process”, Sens. Actuators A 87.pp.163-171.2001.