| 研究生: |
林育帆 Lin, Yu-Fan |
|---|---|
| 論文名稱: |
利用溶膠-凝膠法合成氧化鋅/二氧化矽粉末及其光催化效果研究 Synthesis of ZnO/SiO2 powders by sol-gel method and study of the photocatalytic activity |
| 指導教授: |
黃紀嚴
Huang, Chi-Yen |
| 共同指導教授: |
申永輝
Shen, Yun-Hwei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | ZnO/SiO2 、溶膠-凝膠法 、比表面積 、光觸媒 |
| 外文關鍵詞: | Photocatalyst, ZnO/SiO2, sol-gel, specific surface area |
| 相關次數: | 點閱:92 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光觸媒是一種催化劑,不須消耗其他能源,只需利用光能便能分解對象物,應用範圍非常地廣泛,通常應用於空氣汙染、水汙染、農業汙染和建築物外表髒汙......等等。本次研究以氧化鋅作為光觸媒,因為氧化還原能力佳且室溫或高溫下狀態穩定的優點,故經常被作為光觸媒原料來源。需要紫外光作為驅動能量來進行淨化空氣、純化水質和去除髒汙等功能
氧化鋅具有光子晶體(photonic crystal)的特性,藉以提升進光量,但其粉末奈米化會有團聚不易分散的問題,因而降低與欲分解物的接觸面積,本研究利用溶膠-凝膠法製備氧化鋅/二氧化矽光觸媒粉末來解決這問題。用溶膠-凝膠法製備而得的二氧化矽乾凝膠(Silica xerogel)粉末,利用其高比表面積的特性使氧化鋅溶膠披覆在上面,藉以增加氧化鋅催化效率。
本研究合成氧化鋅/二氧化矽複合粉末,其為核-殼(core-shell)結構。利用XRD、SEM、FTIR、DTA、BET和UV對樣品進行檢測, XRD觀察氧化鋅/二氧化矽粉末特徵峰,發現在900℃出現矽鋅礦特徵峰;SEM對氧化鋅/二氧化矽粉末表面形貌進行觀察;FTIR觀察氧化鋅/二氧化矽粉末在不同溫度下鍵結鍵結情形;DTA對氧化鋅/二氧化矽粉末進行熱分析;BET的檢測中發現在不同的酸鹼溶液的比例會影響二氧化矽乾凝膠(Silica xerogel)粉末的比表面積及膠化時間;UV來觀察氧化鋅/二氧化矽粉末光性質。在對亞甲基藍催化實驗中,降解17小時後,氧化鋅/二氧化矽粉末相對於TiO2(P25)具有較佳的光催化效果。
Photocatalyst does not need to consume fossil fuel; optical energy will be able to simply decompose a chemical compound. A wide range of applications included air pollution, water pollution, and agricultural pollution and so on. The experiment of this study applies sol-gel method to synthesize ZnO/SiO2 photocatalyst. Zinc oxide has the characteristics of photonic crystals, in order to enhance the amount of light, but the powder nano-aggregation will be difficult to disperse, thus reducing the contact with the product to be exploded area. To solve this problem, ZnO was coated with SiO2,which increases specific surface area of the particle.
[1]臺灣能源統計年報,90年。
[2]經濟部,新兆元能源產業旗艦計畫,2008年10月。
[3] A. Fujishima, K. Honda,“Electrochemical Photolysis of Water at a Semiconductor Electrode.”Nature 238 (1972).
[4] Frank, S. N. and Bard, A. J., J. Phys. Chem. 81, 1484, 1977.
[5] Skata, T. and Kawai, T., Academic press, New York, 1983.
[6] Rajehwar, K. and de Tacconi, N. R., Chem. Mater. 13, 2765, 2001.
[7] Vaidyanathan Subramanian and Prashant V. Kamat., J. Phys. Chem. B
107, 7479-7485 2003.
[8] Vaidyanathan Subramanian, Eduardo E. Wolf, Prashant V. Kamat., J. Am.Chem. Soc. 126, 4943-4950, 2004.
[9] K. H. Kim, K. C. Park, and D. Y. Ma, J. Appl. Phys. 81(12), 15 (1997).
[10]溫慧怡,高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究,碩士論文。
[11] A.P.Alivisatos,Science,271,p.933 (1996).14.R. V. Coleman , G. W .Sears , ActaMetallurgica, 4,pp. 268-270 (1956).
[12] T. Tsuchida, S. Kitajima, Chem. Lett. (1990) 1769.
[13] K,-S. Chou, W.-H. Chen, C.-S Huang, J. Chin, Inst. Chem.Eng. 21 (1990) 327.
[14] E. Sonder, T.C. Quinby, D.L. Kinser, Am. Ceram. Soc. Bull.65 (1986) 665.
[15]吳政翰, 以陽極氧化鋁模板製備氧化鋅奈米線及其發光性質之研究, 國立交通大學材料科學與工程系所碩士論文(2004)。
[16]李秉紘,奈米二氧化鈦插層高嶺石/DMSO複合粉末製備光觸媒材料,國立成功大學資源工程研究所碩士論文(2008)。
[17] W. Stöber, A. Fink and E. Bohn, J. Colloid Interface Sci. 26, 62 (1968).
[18] S. V. Bhosale, V. C. Holkunde , S. V. Bhorsakar , V. L. Mathe,“Analysis ofElectro-kinetic Properties of NiFe2O4 Nanoparticles Synthesized byCo-precipitation Method and its Effect on the Adsorption of BSA” IJCPS Vol.4 Special Issue ETP – 2015.
[19] Alexandra Fidalgo, M. Emı´lia Rosa, and Laura M. Ilharco, Chemical Control of Highly Porous Silica Xerogels:Physical Properties and Morphology ,Received January 13, 2003. Revised Manuscript Received March 13, 2003.
[20]陳富亮,最新奈米光觸媒應用技術。
[21]李定中,觸媒的原理與應用,正中,十月(1999)。
[22]陳妙棋,複合鍍TiO2-Ni 光觸媒之製造與特性分析,碩士論文。
[23] Skata, T., Heterogeneous photocatalysis in Liquid-Solid Interface. In
Photocatalysis : fundamentals and applications, p311-338, John Wiley &
Sons, New York, 1989.
[24] Amy L. Linsebigler., Chem. Rev., 95, 735-758, 1995.
[25]Sun D, et al. Noble metals can have different dffect on photocatalysis over metal-organic framework(MOFs):a case study on M/NH3-MIL-125(Ti)(M=Pt and Au).Chem,Eur.J.2014;20:4788.
[26] A. Mills, S. LeHunte, “An overview of semiconductor photocatalysis.”J Photoch Photobio A 108 (1997) 1-35.
[27] Q Zhang, L Gao., Applied Catalysis B, 26, 207, 2000.
[28]張立德,牟季美 奈米材料和奈米結構 滄海書局。
[29] Q Zhang, L Gao., Applied Catalysis B, 26, 207, 2000.
[30] Adrian W. Electrochemistry of Semiconductors. 1998.
[31] M. Anpo, T. Shima., J. Phys. Chem. 91, 4305-4310, 1987.
[32] C. J. Brinker, G.W. Scherer, Sol-Gel-Science chap3.
[33] C.J. Brinker, K.D. Keefer, R.A. Assink, B.D. Kay and C.S. Ashley, J.Non-Cryst. Solids, 63, 45 (1984).
[34] R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc., 72,5705(1950).
[35] Lin, H. T., J. Matl. Sci., 27, 264 (1992).
[36] V. L. Rao, M. C. Eshwar and G. N. Babu, J. Macromol. Sci-Chem.,A23, 1079 (1986).
[37] Z. H. Huang, K. Y. Qiu and Y. Wei, J. Polym. Sci. A53, 2403 (1997).
[38] Nobuyuki Sekine, Cheng-Hsuan Chou, Wei Lek Kwan, Yang Yang. ZnO nano-ridge structure and its application in inverted polymer solar cell. Organic Electronics 10 (2009) 1473–1477.
[39] Delei Ding, WeiLan, ZhiweiYang, XiaohuaZhao, YouxinChen, JunyaWang, XuetaoZhang, YueZhang, QingSu, ErqingXie. A simple method for preparing ZnO foam/carbon quantum dots nanocomposite and their photocatalytic applications.MaterialsScienceinSemiconductorProcessing47(2016)25–31.
[40]汪建民,材料分析,中國材料科學學會。
[41] K. Nadeem, T. Traussnig, I. Letofsky-Papst, H. Krenn, U. Brossmann, R.Wurschum,“Sol–gel synthesis and characterization of single-phase Ni ferritenanoparticles dispersed in SiO2 matrix” Journal of Alloys and Compounds 493
(2010) 385–390.
[42] Ahmed Barhoum, Guy Van Assche, Hubert Rahier, Manuel Fleisch, Sara Bals,Marie-Paule Delplancked, Frederic Leroux, Detlef Bahnemannb. Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism. Materials and Design 119 (2017) 270–276.
[43] S. Muthukumaran, R. Gopalakrishnan. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowdersby co-precipitation method. Optical Materials 34 (2012) 1946–1953.
[44] F. Huang. Tahmasbi Rad. Zheng. Nieh. Cornelius. Hybrid organic-inorganic 6FDA-6pFDA and multi-block 6FDA-DABA polyimide SiO2-TiO2 nanocomposites: Synthesis, FFV, FTIR, swelling,stability, and X-ray scattering. Polymer 108 (2017) 105e120.
[45] B. C. Ho, Y. D. Lee, and W. K. Chin, Journal of Polymer Science:Part A Polymer Chemistry, 30, 2389-2397 (1992).
[46] C. R. E. MANSUR, MARIA INÊS B. TAVARES, ELISABETH E. C.MONTERIO, Journal of Applied Polymer Science, 75, 495-507(2000).