簡易檢索 / 詳目顯示

研究生: 游宗霖
You, Zhong-Lin
論文名稱: 含氫類鑽碳鍍層之磨潤性質與抗菌性分析
Tribological and Antibacterial Performance of Hydrogenated Diamond-like Carbon Coatings
指導教授: 蘇演良
Su, Yen-Liang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 107
中文關鍵詞: 類鑽碳鍍膜磁控濺鍍磨耗金黃色葡萄球菌
外文關鍵詞: Diamond-Like Carbon, Hydrogen, Magnetron Sputtering, Wear, Staphylococcus Aureus
相關次數: 點閱:169下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採用非平衡磁控濺鍍法製備一系列含氫類鑽碳鍍層,探討鍍層之成份、組織、結構、基本機械性質、磨潤性質、抗腐蝕性等。進一步進行微鑽削和抗菌性等應用之研究,抗菌性能評估採在鍍層表面培養金黃色葡萄球菌執行。
    鍍層製備參數研究採兩個階段進行:第一階段探討中介層的影響,以單一類鑽碳鍍層成長在兩種不同中介層上(TiC/Ti及CrC/Cr),選用機械及磨潤性質較佳塗層之中介層,以為後續使用。第二階段採乙炔氣體作為氫源,調整製程中的乙炔流量0-24sccm,製備一系列不同含氫量類鑽碳鍍層,分析氫對於性質的影響。
    研究得到以下一系列結果:使用TiC/Ti為中介層的類鑽碳鍍膜具有較佳的附著性、機械性質及耐磨耗性質。隨著乙炔流量增加,鍍層之含氫量及鍍層厚度(1.4-3.1µm)均有明顯增加。乙炔流量8 sccm (a-C:H08, a: amorphous)下所製備的鍍層具有最高比例的sp3混成鍵結,因而具有最高奈米硬度(15.4GPa)與最低磨耗率(0.053*10-6 mm3/Nm)。在微鑽削試驗中,與未披覆鍍層的微鑽針相比,能夠降低39.7%的刀具磨耗面積。在電化學試驗中,a-C:H08鍍層擁有最佳的抗腐蝕表現。在抗菌性能方面,乙炔流量0 sccm (DLC)製備的鍍層,接觸角為98.2°,具最高的疏水性,經24小時培養後抗菌效率達到最高的69.8%。

    In this study, a series of hydrogenated diamond-like carbon (H-DLC) coatings were deposited by using an unbalanced magnetron sputtering system. The chemical compo-sition, micro-structure, constituted phases and fundamental mechanical, tribological and corrosive properties, etc. were evaluated. Further study on applications was car-ried out in micro-drilling and anti-bacterial tests. The anti-bacterial behavior was as-sessed by using Staphylococcus aureus incubated on the coating surface.
    The study on coating conditions consisted of two stages. In the first stage, the effect of interface on the single DLC coating was evaluated. Two interface layers, TiC/Ti and CrC/Cr, were evaluated. The interface that resulted in DLC coating showing overall better mechanical and tribological performance was used in the following study. In the stage two, to obtain the H-DLC coatings, the acetylene gas was used as the hydrogen source. A series of H-DLC coatings doped with a varying content of H were prepared. The acetylene flow rate ranging 0 - 24 sccm was used. The influence of H content was then studied.
    Some important results are as follows: The DLC coating on the TiC/Ti interlayer showed higher adhesion, hardness and wear resistance than on the CrC/Cr interlayer. The hydrogen content and coating thickness (1.4-3.1 µm) increased as the flow rate of acetylene gas increased. The H-DLC coating (a-C:H08, a: amorphous) prepared at flow rate 8 sccm of acetylene gas showed the highest sp3 bond ratio of all the coatings evaluated, the highest hardness (15.4GPa) and the lowest wear rate (0.053*10-6mm3/Nm). In the drilling test, the a-C:H08 coating reduced the wear area on the micro-drill by 39.7% as compared to the uncoated micro-drill. In the electro-chemical corrosion test, the a-C:H08 coating showed the highest corrosive resistance. The single DLC coating, due to its highest hydrophobic surface (contact angle 98.24°), showed the best anti-bacterial efficiency 69.8% after 24h incubation.

    口試合格證明 I 摘要 II SUMMARY III 誌謝 VII 總目錄 IX 表目錄 XII 圖目錄 XIII 第1章 緒論 1 1-1 前言 1 第2章 文獻回顧 2 2-1 磁控濺鍍法原理 2 2-2 類鑽碳鍍膜 3 2-3 抗菌鍍層 5 第3章 實驗方法與步驟 7 3-1 實驗目的 7 3-2 實驗流程 7 3-3 試片製作與設備安排 9 3-3-1 試件製備 9 3-3-2 分析設備 11 3-3-3 磨耗實驗 13 3-3-4 電化學腐蝕實驗 14 3-3-5 高溫氧化實驗 15 3-3-6 PCB微鑽削實驗 15 3-4 抗菌實驗 17 3-4-1 菌種的取得和前培養 17 3-4-2 接種用菌液的調製 17 3-4-3 O.D.值測量原理 18 3-4-4 抗菌試驗 18 3-5 T-test 19 3-6 實驗設備 21 3-6-1 機械性質相關設備 21 3-6-2 抗菌性質相關設備及相關試劑成分 22 第4章 實驗結果與討論 24 4-1 第一階段:改變中介層對類鑽碳鍍層的影響 24 4-1-1 鍍層分析 24 4-1-2 磨潤性質分析 27 4-1-3 第一階段小結 29 4-2 第二階段:改變含氫量對類鑽碳鍍層的影響 30 4-2-1 鍍層分析 30 4-2-2 磨潤性質分析 37 4-2-3 電化學腐蝕實驗 43 4-2-4 高溫氧化實驗 45 4-3 PCB微鑽削試驗 47 4-4 抗菌實驗 49 第5章 結論 58 參考文獻 60 附錄一 Raman高斯擬合結果 65 附錄二 XPS高斯擬合結果 69 附錄三 奈米硬度負荷位移圖 74 附錄四 表面粗糙度圖檔 78 附錄五 Pin on disk磨痕WLI分析 82 附錄六 表面接觸角分析 89 附錄七 電化學腐蝕實驗EDS分析 98 附錄八 500℃高溫氧化實驗EDS分析 101 附錄九 微鑽針磨耗EDS分析 104

    1. Campoccia, D., L. Montanaro, and C.R. Arciola, A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 2013. 34(34): p. 8533-8554.
    2. Yu, Q., Z. Wu, and H. Chen, Dual-function antibacterial surfaces for biomedical applications. Acta biomaterialia, 2015. 16: p. 1-13.
    3. Window, B., Recent advances in sputter deposition. Surface and Coatings technology, 1995. 71(2): p. 93-97.
    4. Monaghan, D., et al., Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering. Surface and coatings technology, 1993. 59(1-3): p. 21-25.
    5. Kelly, P. and R. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
    6. 李家逸, 添加Ti、W、Zr和Cr碳氮鍍層之性質特徵、磨潤與抗菌性分析. 國立成功大學機械工程學系, 碩士論文, 民國105年.
    7. Aisenberg, S. and R. Chabot, Ion‐beam deposition of thin films of diamondlike carbon. Journal of applied physics, 1971. 42(7): p. 2953-2958.
    8. Srisang, C., et al., Characterization of SiC in DLC/a-Si films prepared by pulsed filtered cathodic arc using Raman spectroscopy and XPS. Applied Surface Science, 2012. 258(15): p. 5605-5609.
    9. Paul, R., S. Dalui, and A. Pal, Modulation of field emission properties of DLC films with the incorporation of nanocrystalline silver nanoparticles by CVD technique. Surface and Coatings Technology, 2010. 204(24): p. 4025-4033.
    10. Jelínek, M., et al., Diamond/graphite content and biocompatibility of DLC films fabricated by PLD. Applied Physics A, 2010. 101(4): p. 579-583.
    11. Xiang, Y., et al., A study of hard diamond-like carbon films in mid-frequency dual-magnetron sputtering. Diamond and related materials, 2006. 15(9): p. 1223-1227.
    12. Wang, Y., et al., Characterization of DLC films prepared by plasma-based ion implantation on AISI 321 steel. Vacuum, 2013. 89: p. 74-77.
    13. Jun, Q., et al., Mechanical and tribological properties of non-hydrogenated DLC films synthesized by IBAD. Surface and Coatings Technology, 2000. 128: p. 324-328.
    14. Niakan, H., Q. Yang, and J. Szpunar, Structure and properties of diamond-like carbon thin films synthesized by biased target ion beam deposition. Surface and Coatings Technology, 2013. 223: p. 11-16.
    15. Grill, A., Review of the tribology of diamond-like carbon. Wear, 1993. 168(1-2): p. 143-153.
    16. Butter, R.S. and A.H. Lettington, Diamond like carbon for biomedical applications. Review. Journal of Chemical Vapor Deposition(USA), 1995. 3(3): p. 182-192.
    17. Singh, A., et al., Glial cell and fibroblast cytotoxicity study on plasma-deposited diamond-like carbon coatings. Biomaterials, 2003. 24(28): p. 5083-5089.
    18. Zhang, D., B. Shen, and F. Sun, Study on tribological behavior and cutting performance of CVD diamond and DLC films on Co-cemented tungsten carbide substrates. Applied Surface Science, 2010. 256(8): p. 2479-2489.
    19. Huang, M.-S., et al., Effect of mold surface antistiction treatment on microinjection replication quality using Cr-N/Zr-DLC thin-layer coating. Journal of Polymer Engineering, 2012. 32(6-7): p. 389-399.
    20. Chou, C.-C., et al., Mechanical properties of fluorinated DLC and Si interlayer on a Ti biomedical alloy. Thin Solid Films, 2013. 528: p. 136-142.
    21. Park, Y.S. and B. Hong, Characteristics of sputtered amorphous carbon films prepared by a closed-field unbalanced magnetron sputtering method. Journal of Non-Crystalline Solids, 2008. 354(52): p. 5504-5508.
    22. Dai, H., et al., Characterization and properties of amorphous carbon coatings prepared by middle frequency pulsed unbalanced magnetron sputtering at different substrate bias. Applied Surface Science, 2012. 258(14): p. 5462-5466.
    23. Chowdhury, S., M. Laugier, and I. Rahman, Effect of target self-bias voltage on the mechanical properties of diamond-like carbon films deposited by RF magnetron sputtering. Thin Solid Films, 2004. 468(1): p. 149-154.
    24. Robertson, J., Diamond-like amorphous carbon. Materials Science and Engineering: R: Reports, 2002. 37(4): p. 129-281.
    25. Yamamoto, K. and K. Matsukado, Effect of hydrogenated DLC coating hardness on the tribological properties under water lubrication. Tribology International, 2006. 39(12): p. 1609-1614.
    26. Kulikovsky, V., et al., Hardness, intrinsic stress, and structure of the aC and aC: H films prepared by magnetron sputtering. Diamond and related materials, 2001. 10(3): p. 1076-1081.
    27. Dai, H., et al., Investigating the structural and physical properties of hydrogenated amorphous carbon films fabricated by middle frequency pulsed unbalanced magnetron sputtering. Physica B: Condensed Matter, 2014. 438: p. 34-40.
    28. Ni, W., et al., Tribological behavior of diamond-like-carbon (DLC) coatings against aluminum alloys at elevated temperatures. Surface and Coatings Technology, 2006. 201(6): p. 3229-3234.
    29. Neuville, S. and A. Matthews, A perspective on the optimisation of hard carbon and related coatings for engineering applications. Thin solid films, 2007. 515(17): p. 6619-6653.
    30. Ishihara, M., et al., Synthesis and characterization of fluorinated amorphous carbon films by reactive magnetron sputtering. Diamond and related materials, 2005. 14(3): p. 989-993.
    31. Wang, Y., et al., A magnetron sputtering technique to prepare aC: H films: Effect of substrate bias. Applied Surface Science, 2011. 257(6): p. 1990-1995.
    32. Czyzniewski, A., Preparation and characterisation of aC and aC: H coatings deposited by pulsed magnetron sputtering. Surface and Coatings Technology, 2009. 203(8): p. 1027-1033.
    33. Tillmann, W., E. Vogli, and F. Hoffmann, Wear-resistant and low-friction diamond-like-carbon (DLC)-layers for industrial tribological applications under humid conditions. Surface and Coatings Technology, 2009. 204(6): p. 1040-1045.
    34. Flock, J.-I. and F. Brennan, Antibodies that block adherence of Staphylococcus aureus to fibronectin. Trends in microbiology, 1999. 7(4): p. 140-141.
    35. Morrison, M., et al., Electrochemical and antimicrobial properties of diamondlike carbon-metal composite films. Diamond and Related Materials, 2006. 15(1): p. 138-146.
    36. Chang, Y.-Y., et al., Characterization and antibacterial performance of ZrNO–Ag coatings. Surface and Coatings Technology, 2013. 231: p. 224-228.
    37. Kang, S., et al., Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007. 23(17): p. 8670-8673.
    38. Marciano, F., et al., Investigation into the antibacterial property and bacterial adhesion of diamond-like carbon films. Vacuum, 2011. 85(6): p. 662-666.
    39. Zhou, H., et al., Investigation into the antibacterial property of carbon films. Diamond and related materials, 2008. 17(7): p. 1416-1419.
    40. Liu, C., et al., Reduction of bacterial adhesion on modified DLC coatings. Colloids and Surfaces B: Biointerfaces, 2008. 61(2): p. 182-187.
    41. Lai, C.-H., et al., Characterization and antibacterial performance of ZrCN/amorphous carbon coatings deposited on titanium implants. Thin Solid Films, 2011. 520(5): p. 1525-1531.
    42. Jeyachandran, Y., et al., Bacterial adhesion studies on titanium, titanium nitride and modified hydroxyapatite thin films. Materials Science and Engineering: C, 2007. 27(1): p. 35-41.
    43. Hilbert, L.R., et al., Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. International biodeterioration & biodegradation, 2003. 52(3): p. 175-185.
    44. Marciano, F., et al., Wettability and antibacterial activity of modified diamond-like carbon films. Applied Surface Science, 2009. 255(20): p. 8377-8382.
    45. Hauert, R., A review of modified DLC coatings for biological applications. Diamond and related materials, 2003. 12(3): p. 583-589.
    46. Ishihara, M., et al., Antibacterial activity of fluorine incorporated DLC films. Diamond and related materials, 2006. 15(4): p. 1011-1014.
    47. 汪建民, 材料分析. 1998: 中國材料科學學會發行.
    48. 楊宗瑋, 生醫級Ti6Al4V合金與316L不鏽鋼晶表面處理後的電化學反應、生物相容性和磨耗性質之研究. 國立成功大學機械工程學系, 碩士論文, 民國102年.
    49. Vidakis, N., A. Antoniadis, and N. Bilalis, The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds. Journal of Materials Processing Technology, 2003. 143: p. 481-485.
    50. Association, J.S., Antimicrobial products-Test for antimicrobial activity and efficacy, Japanese Industrial Standard JIS Z 2801, Reference number. JIS, 2000(2801).
    51. Capano, M., et al., Characterization of amorphous carbon thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1996. 14(2): p. 431-435.
    52. Leyland, A. and A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear, 2000. 246(1): p. 1-11.
    53. Wang, Y., et al., Microstructure and tribological properties of the aC: H films deposited by magnetron sputtering with CH 4/Ar mixture. Surface and Coatings Technology, 2011. 205(19): p. 4577-4581.
    54. Dai, H., et al., Analysis of hydrogenated amorphous carbon films deposited by middle frequency pulsed unbalanced magnetron sputtering. Journal of Non-Crystalline Solids, 2013. 363: p. 77-83.
    55. Wu, Y., et al., Vacuum tribological properties of aC: H film in relation to internal stress and applied load. Tribology International, 2014. 71: p. 82-87.
    56. Diesselberg, M., H.-R. Stock, and P. Mayr, Friction and wear behaviour of PVD chromium nitride supported carbon coatings. Surface and Coatings Technology, 2004. 188: p. 612-616.
    57. Robertson, J., Properties of diamond-like carbon. Surface and Coatings Technology, 1992. 50(3): p. 185-203.
    58. Tomasella, E., C. Meunier, and S. Mikhailov, aC: H thin films deposited by radio-frequency plasma: influence of gas composition on structure, optical properties and stress levels. Surface and Coatings Technology, 2001. 141(2): p. 286-296.
    59. Cheng, Y., et al., Internal stress of aC: H (N) films deposited by radio frequency plasma enhanced chemical vapor deposition. Diamond and related materials, 1999. 8(7): p. 1214-1219.
    60. Grill, A. and V. Patel, Stresses in diamond-like carbon films. Diamond and related materials, 1993. 2(12): p. 1519-1524.
    61. Park, Y.S. and B. Hong, The effect of thermal annealing on the structural and mechanical properties of aC: H thin films prepared by the CFUBM magnetron sputtering method. Journal of Non-Crystalline Solids, 2008. 354(33): p. 3980-3983.
    62. 林承業, 濺鍍氣體通量對含氫碳氮鍍層(a-CNx:H)之機械性質及磨潤性質之影響. 國立成功大學機械工程學系, 碩士論文, 民國106年.
    63. Wang, J., et al., Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ion implantation–deposition. Surface and Coatings Technology, 2004. 186(1): p. 299-304.
    64. Li, B. and B.E. Logan, Bacterial adhesion to glass and metal-oxide surfaces. Colloids and Surfaces B: Biointerfaces, 2004. 36(2): p. 81-90.

    下載圖示 校內:2019-07-01公開
    校外:2019-07-01公開
    QR CODE