| 研究生: |
黃毅峰 Huang, Yi-Fong |
|---|---|
| 論文名稱: |
以新穎之Fenton/過硫酸鹽高級氧化程序降解染料Reactive Black B和雙酚A之研究 Innovative Fenton/(mono)persulfate Oxidation Processes for the Degradation of Reactive Black B and Bisphenol A |
| 指導教授: |
黃耀輝
Yao-Hui, Huang, |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 188 |
| 中文關鍵詞: | 高級氧化 、Fenton 、雙酚A 、自由基 、過硫酸鹽 、反應性染料 、礦化作用 、降解 、脫色 |
| 外文關鍵詞: | Fenton, advanced oxidation processes, reactive dye, Bisphenol A, (mono)persulfate, radicals, decolorization, degradation, mineralization |
| 相關次數: | 點閱:137 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要採用兩種新穎技術高效率處理環境荷爾蒙Bisphenol A (BPA),以及研究生成自由基和其中間產物在BPA降解程序中的主導行為模式。
首先,吾人利用一種高硫酸複合鹽(peroxymonosulfate, PMS)所生成之高氧化電位的自由基(•OH和SO4–•)對BPA進行降解(化學計量比: [PMS]0/[BPA]0 = 2)。並鑑定於不同條件下所生成自由基之種類及主導物種。研究發現該自由基氧化程序能部分礦化BPA (Co2+/PMS程序在1小時礦化率約達40%)。與相關文獻比較,本實驗所採用之活化劑和氧化劑為最小用量。
其次,基因於改善Fenton’s family (Fenton, 電–Fenton 和 光–Fenton程序)技術的通病,在中性pHi處理條件下提出UV–Na2S2O8/H2O2–Fe(II,III)兩階段氧化程序,應用於降解或礦化BPA。第一階段吾人利用另一種高硫酸鹽(persulfate,S2O82–)以生成高氧化電位的硫酸根自由基將BPA氧化降解成較小分子(化學計量比: [S2O82–]0/[BPA]0 = 1)。接著再以光–Fenton程序將此較小分子進行礦化,總礦化率由40%提升至91%。據吾人所知,此乃首次採用此複合技術達完全降解雙酚A。再者,此亦為首次藉由實驗直接證實自由基主導行為模式在此兩種不同氧化劑系統中確實有差異。
另外,吾人亦針對此兩種氧化程序進行其降解動力模式探討;發現該兩種提出之氧化程序皆遵循〝擬一階動力模式〞,如同相關文獻結果,但不同的是,吾人發現在此UV/persulfate程序中所需之活化能相較於一般單獨利用熱催化氧化高硫酸鹽程序所需的活化能(ΔE)要來得小,僅約26 kJ mol–1。在該兩階段氧化程序中,搭配不同研究條件亦可達到25–91%不等之礦化成效。另外,在25–45 °C下Co2+/PMS氧化程序之研究,結果發現BPA之降解受活化劑Co2+劑量之影響相較於受氧化劑PMS劑量來得顯著。而藉由自由基和其中間產物鑑定分析結果吾人亦提出可能之氧化降解反應機制。
相信,此一研究果在後續相關研究可提供有用的參考;再者,此一低化學藥劑量氧化技術於實際廢水處理之應用,亦能單獨或搭配其他氧化方法做為進入生物處理程序前之〝前置處理技術〞。
This study mainly proposed two novel technologies for efficient Bisphenol A (BPA) decontaminantion, and investigated the behavior of dominant radicals and intermediates involved in these BPA degradation processes.
Firstly, we took advantage of the high oxidation–reduction potential of hydroxyl and sulfite radicals transformed from peroxymonosulfate (PMS) (stoichiometric ratio: [PMS]0/[BPA]0 = 2) as the oxidants to oxidize BPA to less complex intermediates. The expected radicals were used to mineralize those compounds very efficient (TOC removal ~40% at 1 h). Further, qualitative identification of both hydroxyl and (bi)sulfate radicals was performed to evaluate their dominance under different conditions.
Secondly, a two–stage oxidation (UV–Na2S2O8/H2O2–Fe(II,III)) process was applied to mineralize BPA at pHi (initial pH) = 7 based on the concept for improving the common drawbacks of Fenton’s family (i.e. Fenton, Fered–Fenton and Photo–Fenton processes). We take advantage of the high oxidation potential of sulfate radicals and use persulfate (stoichiometric ratio: [S2O82–]0/[BPA]0 = 1) as the 1st–stage oxidant to oxidize BPA to less complex intermediates. Afterwards, photo–Fenton process was used to mineralize those intermediates to CO2 (TOC removal was increased 40% to 91%). To the best of our knowledge, this is the first attempt to utilize the two processes in conjunction for the complete degradation of BPA. This is also the first attempt to evidence that the dominant behavior of radicals in a (bi)sulfite process is very different from that in a persulfate process. Additionally, the utilization of extremely small amounts of activator and oxidant for the complete degradation of BPA was achieved.
Moreover, both the BPA degradation in these two proposed oxidation processes formulated a pseudo–first–order kinetic model well as suggested as literature review. Differently, the much lower activation energy (ΔE = 26 kJ mol–1) was further calculated in the UV–Na2S2O8/H2O2–Fe(II,III) process to clarify that the thermal–effect of an illuminated system differs from single heat–assisted systems described. Final TOC removal levels of BPA by the use of such two–stage oxidation processes were 25–34%, 25%, and 87–91% for additional Fe(II,III) activation, H2O2 promotion, and Fe(II,III)/H2O2 promotions, respectively. For the Co2+/PMS oxidative process, the BPA degradation is not obviously dependent on the PMS concentration, but is related to Co2+ dosage over a practicable range of 25–45 °C. Possible BPA side–chain oxidative metabolic pathways are suggested based on experimental results incorporating the evidence from EPR (electron paramagnetic resonance) and analysis from GC–MS (gas chromatography–mass spectrometry).
Hence, the experimental results are believed to be useful for further study. Furthermore, the proposed procedures with low chemical dosages have great potential for lowering operational costs, and thus can be practically implemented with other AOPs as a pretreatment of industrial biological processes.
Alaton, I., Balcioglu, I., 2002. The effect of pre–ozonation on the H2O2/UV treatment of raw and biological pre–treated textile industry wastewater. Water Sci. Technol. 45, 297–304.
Alegre, M.L., Gerones, M., Rosso, J.A., Bertolotti, S.G., Braun, A.M., Martire, D.O., Gonzalez, M.C., 2000. Kinetic Study of the Reactions of Chlorine Atoms and Cl2–˙ Radical Anions in Aqueous Solutions. 1. Reaction with Benzene. J. Phys. Chem. A 104, 3117–3125.
Alexander, A., Eli, K., 2001. Solubilities and vapour pressures of saturated aqueous solutions of sodium peroxydisulfate and potassium peroxydisulfate. J. Chem. Thermodyn. 33, 61–69.
Andrianirinaharivelo, S., Mailhot, G., Boite, M., 1995. Photodegradation of organic pollutants induced by complexation with transition metals (Fe3+ and Cu2+) present in natural waters. Sol. Energ. Mat. Sol. C. 38, 459–474.
Anipsitakis, G.P., Dionysiou, D.D., 2003. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ. Sci. Technol. 37, 4790–4797.
Anipsitakis, G.P., Dionysiou, D.D., 2004a. Radical generation by the interaction of transition metals with common oxidants. Environ. Sci. Technol. 38, 3705–3712.
Anipsitakis, G.P., Dionysiou, D.D., 2004b. Transition metal/UV–based advanced oxidation technologies for water decontamination. Appl. Catal. B–Environ. 54, 155–163.
Anipsitakis, G.P., Dionysiou, D.D., Gonzalea, M.A., 2006. Cobalt–mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ. Sci. Technol. 40, 1000–1007.
APHA, 1992. American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. American Public Health Association (APHA), 18th ed., APHA, Washington, DC, USA.
Balanosky, E., Fernandez, J., Kiwi, J., Lopez, A., 1999. Degradation of membrane concentrates of the textile industry by Fenton like reactions in iron–free solutions at biocompatible pH values. Water Sci. Technol. 40, 417–424.
Balej, J., 1984. Thermodynamics of reactions during the electrosynthesis of peroxodisulphates. Electrochim. Acta 29, 1239–1242.
Ball, D.L., Edwards, J.O., 1956. The kinetics and mechanism of the decomposition of Caro's Acid. I. J. Am. Chem. Soc. 78, 1125–1129.
Balzani, V., Carassiti, V., 1970. Photochemistry of Coordination Compounds, Academic Press, London, pp. 145–192.
Bandara, J., Kiwi, J., 1999. Fast kinetic spectroscopy, decoloration and production of H2O2 induced by visible light in oxygenated solutions of the azo dye Orange II. New J. Chem. 23, 717–724.
Barbeni, M., Minero, C., Pelizzetti, E., Borgarello, E., Serpone, N., 1987. Chemical Degradation of Chlorophenols with Fenton's Reagent. Chemosphere 16, 2225–2237.
Baxendale, J.H., Willson, J.A., 1957. The photolysis of hydrogen peroxide at high light intensities. T. Faraday Soc. 53, 344–356.
Behrman, E.J., Dean, D.H., 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gel electrophoresis. J. Chromatogr. B, Biomed. Sci. Appl. 723, 325–326.
Bigda, R., 1995. Consider Fenton's chemistry for wastewater treatment. Chem. Eng. Progr. 91, 62–66.
Brandt, C., van Eldik, R., 1995. Transition metal–catalysed oxidation of sulfur(IV) oxides. Atmospheric–relevant processes and mechanisms. Chem. Rev. 95, 119–190.
Brillas, E., Calpe, J.C., Casado, J., 2000. Mineralization of 2,4–D by advanced electrochemical oxidation processes. Water Res. 34, 2253–2262.
Brillas, E., Mur, E., Sauleda, R., Sanchez, L., Peral, J., Domenech, X., Casado, J., 1998a. Aniline mineralization by AOPs: anodic oxidation, photocatalysis, electro–Fenton and photo–electro–Fenton processes. Appl. Catal. B–Environ. 16, 31–42.
Brillas, E., Sauleda, R., Casado, J., 1998b. Degradation of 4–chlorophenol by anodic oxidation, electro–Fenton, photoelectro–Fenton and peroxicoagulation processes. J. Electrochem. Soc. 145, 2253–2262.
Brown, R.A., 2003. In Situ Chemical Oxidation: Performance, Practice, and Pitfalls. AFCEE Technology Transfer Workshop. San Antonio, TX..
Brown, R.A., Robinson, D., Skladany, G., Loeper, J., 2003. Response to naturally occurring organic material: Permanganate versus persulfate. 2003–8th International FZK/TNO Conference on Contaminated Soil, Gent, Belgium, pp. 1692–1698.
Burrows, C.J., Muller, J.G., 1998. Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1151.
Buxton, G.V., Bydder, M., Salmon, G.A., 1999. The reactivity of chlorine atoms in aqueous solutions–Part II. The equilibrium SO4–• +Cl– << SO42– + Cl•. Phys. Chem. Chem. Phys. 1, 269–273.
Buxton, G.V., Greenstock, C., Hellman, W.P., Ross, A.B., 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms, and hydroxyl radicals (•OH/•O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–886.
Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1998. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O–) in aqueous solutions. Phys. Chem. Ref. Data 17, 513–886.
Cahill, A.E., Taube, H., 1952. The use of heavy oxygen in the study of reactions of hydrogen peroxide. J. Am. Chem. Soc. 74, 2312– 2318.
Chamarro, E.A.M., Esplugas, S., 2001. Use of Fenton reagent to inprove organic chemical biodegradability. Water Res. 35, 1047–1051.
Chang, P.H., Huang, Y.H., Hsueh, C.L., Lu, M.C., Huang, G.H., 2003. AOP Third Congress (IWA), pp. 415–421.
Chang, P.H., Huang, Y.H., Hsueh, C.L., Lu, M.C., Huang, G.H., 2004. Treatment of Non–Biodegradable Wastewater by Electro–Fenton Method. Water Sci. Technol. 49, 213–218.
Chou, S.S., Huang, Y.H., Lee, S.N., Huang, G.H., Huang, C., 1999. Treatment of high strength hexamine containing wastewater by electro–Fenton method. Water Res. 33, 751–759.
Colborn, T., Dumanoski, D., Myers, P., 2009. Bisphenol A Overview, Environment California Research & Policy Center, http://www.environmentcalifornia.org/environmental–health/stop–toxic–toys/bisphenol–a–overview%20.
Cuypers, C., Grotenhuis, T., Nierop, K.G.J., Franco, E.M., Jager, A.D., Rulkens, W., 2002. Amorphous and condensed organic matter domains: the effect of persulfate oxidation on the composition of soil/sediment organic matter. Chemosphere 48, 919–931.
Dogliotti, L., Hayon, E., 1967. Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide radical anions. J. Phys. Chem. 71, 2511–2516.
Dorfman, L.M., Adams, G.E., 1973. Reactivity of the hydroxyl radical in aqueous solutions. pp. 1–59.
Dubey, S., Hemkar, S., Khandelwal, C.L., Sharma, P.D., 2002. Kinetics and mechanism of oxidation of hypophosphorous acid by peroxomonosulphate in acid aqueous medium. Inorg. Chem. Commun. 5, 903–908.
Eberson, L., 1987. Electron Transfer Reactions in Organic Chemistry. Spring–Verlag, Berlin.
Edwards, J.O., 1980. Thermal decomposition of peroxodisulphate ions. Rev. Inorg. Chem. 2, 179–206.
Eisenberg, G.M., 1943. Colorimetric determination of hydrogen peroxide. Ind. Eng. Chem. Anal. Ed. 15, 327–328.
Ernst, T., Wawrenczyk, M., Cyfert, M., Wronska, M., 1979. Effect of pH on the kinetics of ferrate(VI) decomposition, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 27, 773–778.
Fallmann, H., Krutzler, T., Bauer, R., Malato, S., Blanco, J., 1999. Applicability of the Photo–Fenton method for treating water containing pesticides. Catal. Today 54, 309–319.
Faust, B.C., Hoigne, J., 1990. Photolysis of Fe(III)–hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ. 24, 79–89.
Faust, B.C., Zepp, R.G., 1993. Photochemistry of aqueous iron(III)–polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27, 2517–2522.
Fenton, H.J.H., 1894. Oxidation of tartaric acid in the presence of ion. J. Chem. Soc. 65, 899–910.
Fenton, H.J.H., Jackson, H., 1899. The oxidation of polyhydric alcohols in presence of iron. J. Chem. Soc. Trans. 75, 1–11.
Fernandez, J., Maruthamuthu, P., Kiwi, J., 2004a. Photobleaching and mineralization of Orange II by oxone and metal–ions involving Fenton–like chemistry under visible light. J. Photoch. Photobio. A 161, 185–192.
Fernandez, J., Maruthamuthu, P., Renken, A., Kiwi, J., 2004b. Bleaching and photobleaching of Orange II within seconds by the oxone/Co2+ reagent in Fenton–like processes. Appl. Catal. B–Environ. 49, 207–215.
Feuerstein, W., Gilbert, E., Eberle, S.H., 1981. Modellversuche zur Oxidation aromatischer Verbindungen mittels Wasserstoffperoxid in der Abwasserbehandlung. Vom Wasser 56, 35–54.
Floyd, R.A., Soong, L.M., 1977. Spin trapping in biological systems. Oxidation of the spin trap 5,5–dimethyl–1–pyrroline–1–oxide by a hydroperoxide–hematin system. Biochem. Biophys. Res. Commun. 74, 79–84.
Fortnum, D.H., Battaglia, C.J., Cohen, S.R., Edwards, J.O., 1960. The Kinetics of the Oxidation of Halide Ions by Monosubstituted Peroxides. J. Am. Chem. Soc. 82, 778–782.
Francis, R.C., Troughton, N.A., Zhang, X.Z., Hil, l.R.T., 1994. Caroate delignification enhancement by halides. Tappi J. 77, 135–141.
Gareth, J.P., Andrew, A.C., 1996. Polymer communications: sonochemical acceleration of persulfate decomposition. Polymer 37, 3971–3973.
Glaze, W., Chapin, D., 1987. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone. Sci. Eng. 9, 335–342.
Glaze, W., Kang, J., 1989. Advanced oxidation processes. Test of a kinetic model for the oxidation of organic compounds with ozone and hydrogen peroxide in a semibatch reactor. Ind. Eng. Chem. Res. 28, 1580–1587.
Goulden, P.D., Anthony, D.H.J., 1978. Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Anal. Chem. 50, 953–958.
Green, L., Masson, O., 1910. The dynamics of the decomposition of persulphuric acid and its salts in aqueous solution. J. Chem. Soc. Trans. 97, 2083–2099.
Haag, W.R., Yao, C.C.D., 1992. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 26, 1005–1013.
Hatchard, C.G., Parker, C.A., 1956. A New Sensitive Chemical Actinometer. II. Potassium Ferrioxalate as a Standard Chemical Actinometer. Proc. R. Soc. Lond. Ser. A 235, 518–536.
Hayon, E., Treinin, A., Wilf, J., 1972. Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite–bisulfite–pyrosulfite systems. SO2–, SO3–, SO4–, and SO5– radicals. J. Am. Chem. Soc. 94, 47–57.
Hoag, G.E., Chheda, V., Woody, B.A., Dobbs, G.M., 2000. Chemical oxidation of volatile organic compounds. p. 548.
Hori, H., Yamamoto, A., Hayakawa, E., Taniyasu, S., Yamashita, N., Kutsuna, S., Kiatagawa, H., Arakawa, R., 2005. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant. Environ. Sci. Technol. 39, 2383–2388.
House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev. 62, 185–203.
Hsu, S.C., Don, T.M., Chiu, W.Y., 2002. Free radical degradation of chitosan with potassium persulfate. Polym. Degrad. Stabil. 75, 73–83.
http://health4u.hk/Info/cancer.htm.
http://law.epa.gov.tw/en/laws/480770486.html#art02.
http://www.estcp.org/documents/techdocs/ISO_Report.pdf.
Huang, K.C., Couttenye, R.A., Hoag, G.E., 2002. Kinetics of heat–assisted persulfate oxidation of methyl tert–butyl ether (MTBE). Chemosphere 49, 413–420.
Huang, K.C., Zhao, Z.q., Hoag, G.E., Dahmani, A., Block, P.A., 2005. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere 61, 551–560.
Huang, Y., Li, J., Ma, W., Cheng, M., Zhao, J., Yu, J.C., 2004. Efficient H2O2 oxidation of organic pollutants catalyzed by supported iron sulfophenylporphyrin under visible light irradiation. J. Phys. Chem. B 108, 7263–7270.
Huang, Y.F., Huang, Y.H., 2009a. Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process. J. Hazard. Mater. In Press, Accepted Manuscript, Available online 14 January.
Huang, Y.F., Huang, Y.H., 2009b. Identification of produced powerful radicals involved in the mineralization of Bisphenol A using a novel UV–Na2S2O8/H2O2–Fe(II,III) two–stage oxidation process. J. Hazard. Mater. 162, 1211–1216.
Huang, Y.H., Chen, C.C., Huang, G.H., Chou, S.S., 2001. Comparison of a novel electro–Fenton method with Fenton’s reagent in treating a highly contaminated wastewater. Water Sci. Technol. 43, 17–24.
Huang, Y.H., Huang, Y.F., Chang, P.S., Chen, C.Y., 2008. Comparative study of oxidation of dye–Reactive Black B by different advanced oxidation processes: Fenton, electro–Fenton and photo–Fenton. J. Hazard. Mater. 154, 655–662.
Huang, Y.H., Tsai, S.T., Huang, Y.F., Chen, C.Y., 2007. Degradation of commercial azo dye reactive Black B in photo/ferrioxalate system. J. Hazard. Mater. 140, 382–388.
Huie, R.E., Clifton, C.L., Altstein, N., 1989. A pulse radiolysis and flash photolysis study of the Radicals SO2–, SO3–, SO4– and SO5–. Radiat. Phys. Chem. 33, 361–370.
Huie, R.E., Neta, P., 1984. Chemical behavior of SO4– and SO5– radicals in aqueous solutions. J. Phys. Chem. 88, 5665–5669.
Huling, S.G., Arnold, R.G., Jones, P.K., Sierka, R.A., 2000. Predicting the rate of Fenton–driven 2–chlorophenol transformation using a contaminant analog. Journal of Environmental Engineering 126, 348–353.
Huling, S.G., Arnold, R.G., Sierka, R.A., Miller, M.A., 1998. Measurement of hydroxyl radical activity in a soil slurry using the spin trap α–(4–pyridyl–1–oxide)–N–tert– butyl–nitrone. Environ. Sci. Technol. 32, 3436–3441.
Huling, S.G., Arnold, R.G., Sierka, R.A., Miller, M.A., 2001. Influence of peat on Fenton oxidation. Water Res. 35, 1687–1694.
Hunt, J.P., Taube, H., 1952. The Photochemical Decomposition of Hydrogen Peroxide. Quantum Yields, Tracer and Fractionation Effects. J. Am. Chem. Soc. 74, 5999–6002.
Ingold, K.U., 1969. Peroxy radicals. Acc. Chem. Res. 2, 1–9.
ITRC, 2005. Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater. Washington, DC: Interstate Technology & Regulatory Council.
JEA, 1998. Strategic Programs on Environmental Endocrine Disrupters'98. Japan Environment Agency.
Kaludjerski, M., 2001. Enhancement of biodegradability of dichlorodiethyl ether by preoxidation.
Kanakaraj, P., Maruthamuthu, P., 1983. Kinetics and mechanism of photochemical reactions of peroxomonosulfate in the presence and absence of 2–propanol. Int. J. Chem. Kinet. 15, 1301–1310.
Kang, S.F., Liao, C.H., Po, S.T., 2000. Decolorization of textile wastewater by photo–fenton oxidation technology. Chemosphere 41, 1287–1294.
Kelly, K.L., Marley, M.C., Sperry, K.L., 2002. In situ chemical oxidation on MTBE. Proceedings of 2002 Joint CSCE/EWRI of ASCE International Conference on Environmental Engineering, Niagara Falls, Ontario, Canada.
Kislenko, V.N., Berlin, A.A., Litovchnko, N.V., 1995. Kinetics of oxidation of glucose by persulfate ions in the presence of Mn(II) ions. Kinet. Catal. 38, 359–364.
Kolthoff, I.M., Miller, I.K., 1951. The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J. Am. Chem. Soc. 73, 3055–3059.
Langford, C.H., Carey, J.H., 1975. The Charge Transfer Photochemistry of the Hexaaquoiron(III) Ion, the Chloropentaaquoiron(III) Ion, and the µ–Dihydroxo Dimer Explored with tert–Butyl Alcohol Scavenging. Can. J. Chem. 53, 2430–2435.
Latimer, W.M., 1952. Oxidation Potentials. Prentice–Hall, Inc., Englewood Cliffs, NJ.
Legrini, O., Oliveros, E., Braun, A.M., 1993. Photochemical processes for water treatment. Chem. Rev. 93, 671–698.
Liang, C., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55, 1213–1223.
Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2003. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1–trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination 12, 207–228.
Liang, C.J., Lee, I.L., Hsu, I.Y., Liang, C.P., Lin, Y.L., 2008. Persulfate oxidation of trichloroethylene with and without iron activation in porous media. Chemosphere 70, 426–435.
Liang, C.J., Wang, Z.S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106–113.
Lide, D.R., 1999–2000. CRC Handbook of Chemistry and Physics. CRC, Boca Raton, FL.
Lipczynska–Kochany, E., 1991. Degradation of Aqueous Nitrophenols and Nitrobenzene by Means of The Fenton Reaction. Chemosphere 22, 529–536.
Lipczynska–Kochany, E., 1992. Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: Photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere 24, 1369–1380.
Lucas, M.S., Peres, J.A., 2006. Decolorization of the azo dye reactive Black 5 by Fenton and photo–Fenton oxidation. Dyes Pigments 71, 236–244.
Maillard, B., Ingold, K.U., Scaiano, J.C., 1983. Rate constants for the reactions of free radicals with oxygen in solution. J. Am. Chem. Soc. 105, 5095–5099.
Manivannan, G., Maruthamuthu, P., 1987. Peroxo salts as initiators of vinyl polymerization–III. Polymerization of acrylonitrile initiated by the peroxomonosulphate–Co(II) redox system. Eur. Polym. J. 23, 311–313.
Marsh, C., Edwards, J.O., 1989. The freeradical de composition of peroxymonosulfate. Prog. React. Kinet. 15, 35–75.
Martire, D.O., Rosso, J.A., Bertolotti, S.G., Le Roux, G.C., Braun, A.M., Gonzalez, M.C., 2001. Kinetic Study of the Reactions of Chlorine Atoms and Cl2–• Radical Anions in Aqueous Solutions. II. Toluene, Benzoic Acid, and Chlorobenzene. J. Phys. Chem. A 104, 3117–3125.
McCord, J.M., Fridovich, I., 1969. The utility of superoxide dismutase in studying free radical reactions. J. Biol. Chem. 244, 6056–6063.
McElroy, W.J., 1990. A Laser Photolysis Study of the Reaction of SO4– and Cl– and the Subsequent Decay of Cl2– in Aqueous Solution. J. Phys. Chem. A 94, 2435–2441.
Miles, C.J., Brezonik, P.L., 1981. Oxygen consumption in humic–colored waters by a photochemical ferrous–ferric catalytic cycle. Environ. Sci. Technol. 8, 1089–1095.
Muruganandham, M., Swaminathan, M., 2004. Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigments 62, 269–275.
Nadtochenko, V., Kiwi, J., 1997. Photoinduced adduct formation between Orange II and [Fe3+(aq)] or Fe(ox)33–—H2O2 photocatalytic degradation and laser spectroscopy. J. Chem. Soc. Faraday T. 93, 2373–2378.
Narender, N.S.P., Kulkarni, S.J., Raghavan, K.V., 2002. Highly Efficient, Para–selective Oxychlorination of Aromatic Compounds using Potassium Chloride and Oxone®. Synth. Commun. 32, 279–286.
Neta, P., Huie, R.E., Ross, A.B., 1988. Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 17, 1027–1284.
Neta, P., Madhavan, V., Zemel, H., Fessenden, R.W., 1977. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds. J. Am. Chem. Soc. 99, 163–164.
Oliveros, E., Legrini, O., Hohl, M., Müller, T., Braun, A.M., 1997. Industrial waste water treatment: large scale development of a light–enhanced Fenton reaction. Chem. Eng. Proc. 36, 397–405.
Ollis, D.F., Al–Ekabi, H.E., 1993. Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam.
Pandurengan, T., Maruthamuthu, P., 1981. Kinetics and mechanism of oxidation of dimethyl sulfoxide by peroxomonosulfate. B. Chem. Soc. Jpn. 54, 3551–3555.
Pardieck, D.L., Bouwer, E.J., Stone, A.T., 1992. Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. J. Contam. Hydrol. 9, 221–242.
Pasek, E.A., Straub, D.K., 1972. Tris(N,N–disubstituted dithiocarbamato)iron(IV) tetrafluoroborates. Inorg. Chem. 11, 259–263.
Perez, M., Torrades, F., Domenech, X., Peral, J., 2002. Fenton and photo–Fenton oxidation of textile effluents. Water Res. 36, 2703–2710.
Peyton, G.R., 1993. The free–radical chemistry of persulfate–based total organic carbon analyzers. Mar. Chem. 41, 91–103.
Peyton, G.R., Bell, O.J., Girin, E., Lefaivre, M.H., 1995. Reductive destruction of water contaminants during treatment with hydroxyl radical processes. Environ. Sci. Technol. 29, 1710–1712.
Pignatello, J.J., 1992. Dark and Photoassisted Fe3+ Catalyzed of Chlorophenoxy Herbicides by Hydrogen. Environ. Sci. Technol. 26, 944–951.
Pignatello, J.J., Chapa, G., 1994. Degradation of PCBs by ferric iron, hydrogen peroxide and UV light. Environ. Toxicol. Chem. 13, 423–427.
Pugh, J.R., 1999. In situ remediation of soils containing organic contaminants using the electromigration of peroxysulfate ions. p. 348.
Reed, G.A., Curtis, J.F., Mottley, C., Eling, T.E., Mason, R.P., 1986. Epoxidation of (±)–7,8–dihydroxy–7,8–dihydrobenzo[α]pyrene during (bi)sulfite autoxidation: Activation of a procarcinogen by a cocarcinogen. P. Natl. Acad. Sci. USA 83, 7499–7502.
Renganathan, R., Maruthamuthu, P., 1986. Kinetics and mechanism of oxidation of aliphatic aldehydes by peroxomonosulphate. Int. J. Chem. Kinet. 18, 49–58.
Riggs, J.P., Rodriguez, F., 1967. Polymerization of acrylamide initiated by the persulfate–thiosulfate redox couple. J. Polym. Sci. Part A 5, 3167–3181.
Rivas, F.J., Beltran, F.J., Frades, J., Buxeda, P., 2001. Oxidation of p–hydroxybenzoic acid by Fenton's reagent. Water Res. 35, 387–396.
Rosen, G.M., Rauckman, E.J., 1980. Spin trapping of the primary radical involved in the activation of the carcinogen N–hydroxy–2–acetylaminofluorene by cumene hydroperoxide–hematin. Mol. Pharmacol. 17, 233–238.
Ruppert, B., Bauer, R., Heisler, G., 1993. The photo–Fenton reaction—an effective photochemical waste–water treatment process. J. Photoch. Photobio. A 73, 75–78.
Safarzadeh–Amiri, A., 1996. Ferrioxalate–mediated solar degradation of organic contaminants in water. Sol. Energy 56, 439–443.
Safarzadeh–Amiri, A., 1997. Ferrioxalate–mediated photodegradation of organic pollutants in contaminated water. Water Res. 31, 787–798.
Safarzadeh–Amiri, A., Bolton, J.R., Cater, S.R., 1996. The use of iron in advanced oxidation processes. J. Adv. Oxid. Technol. 1, 18–26.
Sato, E., Kato, M., Kohno, M., Niwano, Y., 2007. Clindamycin phosphate scavenges hydroxyl radical. Int. J. Dermatol. 46, 1185–1187.
Schafer, T.E., Lapp, C.A., Hanes, C.M., Lewis, J.B., Wataha, J.C., Schuster, G.S., 1999. Estrogenicity of bisphenol A and bisphenol A dimethacrylate in vitro. J. Biomed. Mater. Res. 45, 192–197.
Schumb, W.C., Satterfield, C.N., Wentworth, R.L., 1955. Hydrogen Peroxide. American Chemical Society Monograph Series. Reinhold, New York.
Scott, G.H., Bruce, E.P., 2006. In–Situ Chemical Oxidation–Engineering Issue.
Sedlak, D.L., Andren, A.W., 1991. Oxidation of chlorobenzene with Fenton's reagent. Environ. Sci. Technol. 25, 777–782.
Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L., Lowe, K.S., 2001. Principles and Practices of In Situ Chemical Oxidation Using Permanganate. Battelle Press, Columbus, OH.
Sperry, K.L., Marley, M.C., Bruell, C.J., Liang, C., Hochreiter, J., 2002. Iron catalyzed persulfate oxidation of chlorinated solvents. In: Proceedings of the Third International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Battelle Press, Columbus, OH.
Spinks, J.W.T., Woods, R.J., 1990. An introduction to radiation chemistry. John Wiley & Sons, New York.
Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., Branson, D.R., Harris, L.R., 2000. Bisphenol A concentrations in receiving waters near US manufacturing and processing facilities. Chemosphere 40, 521–525.
Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T., Harris, L.R., 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36, 2149–2173.
Steenken, S., 1988. Electron Transfer Between Radicals and Organic Molecules via Addition/Elimination. An Inner–Sphere Path. In Free Radicals Chemistry, Pathology and Medicine. Rice–Evans, C., Dormandy, T., London.
Stuart, J.N., Goerges, A.L., Zaleski, J.M., 2000. Characterization of the Ni(III) Intermediate in the Reaction of (1,4,8,11–Tetraazacy–clotetradecane) nickel(II) Perchlorate with KHSO5: Implications to the Mechanism of Oxidative DNA Modification. Inorg. Chem. 39, 5976–5984.
Sun, J.H., Sun, S.P., Wang, G.L., Qiao, L.P., 2007. Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process. Dyes Pigments 74, 647–652.
Sun, Y., Pignatello, J.J., 1993. Photochemical reactions involved in the total mineralization of 2,4–D by Fe3+/H2O2/UV. Environ. Sci. Technol. 27, 304–310.
Susan, P., Monice, Z.F., 2001. Final report on the safety assessment of ammonium, potassium, and sodium persulfate. Int. J. Toxicol. 20, 7–21.
Tamura, H., Goto, K., Yotsuyanagi, T., Nagayama, M., 1974. Spectrophotometric determination of iron (III) with 1,10–phenanthroline in the presence of large amounts of iron (III). Talanta 21, 314–318.
Tanaka, S., Kawai, M., Nakata, Y., Terashima, M., Kuramitz, H., Fukushima, M., 2003. Degradation of bisphenol A by photo–fenton processes. Toxicol. Environ. Chem. 85, 95–102.
Theo, C., Dumanoski, D., Peterson Myers, J., 2004. Widespread Pollutions with Endocrine–disrupting Chemicals.
Tieckelmann, R.H., Thorp, D.S., Gagliardi, C., Downey, G.D., 1998. Use of persulfate to destroy haloform. p. 985.
Walling, C., 1975. Fenton's reagent revisited. Acc. Chem. Res. 8, 125–131.
Watts, R.J., Bottenberg, B.C., Hess, T.F., Jensen, M.D., Teel, A.L., 1999. Role of reductants in the enhanced desorption and transformation of chloroaliphatic compounds by modified Fenton's reactions. Environ. Sci. Technol. 33, 3432–3437.
Wu, K.Q., Xie, Y.D., Zhao, J.C., Hidaka, H., 1999. Photo–Fenton degradation of a dye under visible light irradiation. J. Mol. Catal. A–Chem. 144, 77–84.
www.dupont.com/oxone/applications/index.html.
Xie, Y., Chen, F., 2000. Photoassisted degradation of dyes in the presence of Fe3+ and H2O2 under visible irradiation. J. Photoch. Photobio. A 136, 235–240.
Yu, X.Y., Bao, Z.C., Barker, J.R., 2004. Free radical reactions involving Cl•, Cl2–•, and SO4–• in the 248 nm photolysis of aqueous solutions containing S2O82– and Cl–. J. Phys. Chem. A 108, 295–308.
Zauo, Y., Hoigné, J., 1992. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)–oxalato complexes. Environ. Sci. Technol. 26, 1014–1022.
Zepp, R.G., Faust, B.C., Hoigné. J., 1992. Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron(II) with hydrogen peroxide: the photo–Fenton reaction. Environ. Sci. Technol. 26, 313–319.
Zheng, T.C., Richardson, D.E., 1995. Homogeneous aqueous oxidation of organic molecules by oxone and catalysis by a water–soluble manganese porphyrin complex. Tetrahedron Lett. 36, 833–836.
Zuo, Y., 1995. Geochim. Cosmochim. Acta. 59, 3110–3123.
陳庭堅, 陳福安, 許美芳, 2003. 環境荷爾蒙調查(2/3), 行政院環境保護署委託研究報告.