| 研究生: |
陳世欣 Chen, Shih-Hsin |
|---|---|
| 論文名稱: |
鍺含量對矽鍺P型金氧半場效電晶體電性及1/f雜訊特性之研究 Investigation of Ge content on DC and 1/f Noise Characteristics in SiGe PMOSFETs |
| 指導教授: |
張守進
Chang, Shoou-Jinn 吳三連 Wu, San-Lein |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 1/f 雜訊 、短通道效應 、移動率 、金氧半場效電晶體 、矽鍺 、應變 |
| 外文關鍵詞: | strain, SiGe, MOSFET, short channel effect, 1/f noise, mobility |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們利用超高真空化學氣相沉積法(UHVCVD),成長矽鍺P型金氧半場效電晶體 (SiGe PMOSFET),並且研究鍺含量變化對於元件電特性及1/f雜訊之影響。
因為能帶分離及等效質量下降,壓縮應變矽鍺可以提高電洞的移動率,因此可以將它運用於矽基金氧半場效電晶體。由實驗結果證實,應變矽鍺P型金氧半場效電晶體在轉導最大值、轉導半高寬、驅動電流的表現均比純矽金氧半場效電晶體來的好。另外我們也發現應變矽鍺P型金氧半場效電晶體也比純矽金氧半場效電晶體遭遇到較少的短通道效應。
最後,我們觀察矽鍺P型金氧半場效電晶體的1/f雜訊機制。由於應變矽鍺P型金氧半場效電晶體的電洞大部分侷限在遠離矽和二氧化矽界面的矽鍺通道而接觸到較少的缺陷,因此在1/f雜訊表現方面比純矽金氧半場效電晶體還要小。此外在強反轉區時,隨著鍺含量上升,使得1/f雜訊表現由原本的載子變動理論轉變為移動率變動理論。
In this thesis, the SiGe PMOSFET structures grown by ultra high vacuum chemical vapor deposition (UHVCVD) are fabricated. DC characteristics and 1/f noise analysis for different Ge content in the SiGe channel have been demonstrated.
Introduction of compressively strained-SiGe layer into Si-based device is attributed to the fact that hole mobility can be enhanced due to energy band splitting and the reduction of effective mass. Experimental results show that strained-SiGe PMOSFETs enhance device performance in transconductance (gm) max, FWHM of gm, driving current and etc. Moreover, we also found that strained-SiGe PMOSFETs suffer from less short channel effect (SCE) than Si control counterparts.
Finally, the 1/f noise mechanism observed in strained-SiGe device is presented. Compared to Si control devices, strained-SiGe devices exhibit lower 1/f noise level due to holes in strained-SiGe devices are mainly confined in SiGe channel away from Si/SiO2 interface where many defects and traps are located. Moreover, 1/f noise behavior changes gradually from carrier number fluctuations to mobility fluctuations as Ge content increases at strong inversion region.
[1.1] N. Mohta and S. E. Thompson, “Mobility enhancement,” IEEE Circuits Devices, p. 18, Sep. 2005.
[1.2] C. W. Liu, S. Maikap, and C. Y. Yu, “Mobility-enhancement technologies,” IEEE Circuits Devices, p. 21, May 2005.
[1.3] D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, and H. Jaouen, “Strained Si, Ge, and Si1−xGex alloys modeled with a first-principles-optimized full-zone k-p method,” Phys. Rev. B, vol. 73, p. 195208, Nov. 2006.
[1.4] B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., vol. 48, p. 797, 1986.
[1.5] B. S. Meyerson, “UHV/CVD growth of Si and SiGe alloys: chemistry, physics, and device applications,” Proc. IEEE, vol. 80, p. 1592, 1992.
[1.6] B. Tillack, D. Krüger, P. Gaworzewski, and G. Ritter, “Atomic layer doping of SiGe by low pressure chemical vapor deposition,” Thin Solid Films, vol. 294, p. 15, 1997.
[1.7] B. Tillack, G. Ritter, D. Krüger, P. Zaumseil, G. Morgenstern, and K. D. Glowatzki, “Sharp boron doping within thin SiGe layer by rapid thermal chemical vapor deposition,” Mater. Sci. Technol., vol. 11, p. 1060, 1995.
[1.8] A. T. Vink, P. J. Roksnoer, C. J. Vriezema, L. J. van Ijzendoorn, and P. C. Zalm, “Sharp boron spikes in silicon grown at reduced and atmospheric pressure by fast-gas-switching CVD,” Jpn. J. Appl. Phys., vol. 29, p. 2307, 1990.
[1.9] J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1-x/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol. A, vol. 2, p. 436, 1984.
[1.10] J. R. Arthur, “ Molecular beam epitaxy,” Surf. Sci., vol. 500, p. 189, 2002.
[1.11] M. A. Herman, “Approaches to understanding MBE growth phenomena,” Thin Solid Films, vol. 267, no. 1-2, p. 1, 1995.
[2.1] R. People, “Physical and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., vol. QE-22, no. 9, p. 1696, 1986.
[2.2] J. H. van der Merwe, “Crystal interface. Part II. Finite overgrowths,” J. Appl. Phys., vol. 34, p. 123, 1963.
[2.3] Y. H. Xie, “SiGe field effect transistors,” Mater. Sci. Eng. R-Rep., vol. 25, p. 89, 1999.
[2.4] R. People and J. C. Bean, “Band alignments of coherently strained Si1-xGex/Si heterostructures on (001) Si1-yGey substrate,” Appl. Phys. Lett., vol. 48, p. 538, 1986.
[2.5] J. S. Goo, Q. Xiang and Y.Takamura, “Band offset induced threshold variation in strained-Si nMOSFETs,” IEEE Electron Devices Lett., vol. 24, no. 0, p. 568, Sep. 2003.
[2.6] T. Manku and A. Nathen “Energy-band structure for strained p-type Si1-xGex,” Phys. Rev. B, vol. 43, no. 15, p. 12634, May 1991.
[2.7] K. Rim, “Strained Si surface channel MOSFETs for high-performance CMOS technology,” Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, p. 116.
[2.8] J. M. Hinckley, and J. Singh, “Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si (001) substrates,” Phys. Rev. B, vol. 41, no. 5, p. 2912, 1990.
[2.9] J. M. Hinckley, V. Sankaran, and J. Singh, “Charged carrier transport in Si1-xGex pseudomorphic alloys matched to Si strain-related transport improvements,” Appl. Phys. Lett., vol. 55, p. 2008, 1989.
[2.10] S. K. Chun, and K. L. Wang, “Effective mass and mobility of holes in strained Si1-xGex on (001) Si1-yGey substrate,” IEEE Trans. Electron Devices, vol. 39, p. 2153, 1992.
[3.1] S. L. Wu, Y. M. Lin, S. J. Chang, S. C. Lu, P. S. Chen, and C. W. Liu, “Enhanced CMOS performances using substrate strained-SiGe and mechanical strained-Si technology,” IEEE. Electron Devices Lett., vol. 27, no. 1, p. 1406, Jan. 2006.
[3.2] Y. M. Lin, S. L. Wu, S. J. Chang, P. S. Chen, and C. W. Liu, “Hole confinement and 1/f noise characteristics of SiGe double-Quantum-Well p-Type Metal–Oxide–Semiconductor field-effect transistors,” Jpn. J. Appl. Phys., vol. 45, no. 5A, p. 4006, 2006.
[3.3] P. W. Li , W. M. Liao, “Analysis of Si/SiGe channel pMOSFETs for deep-submicron scaling,” Solid State Electron., vol. 46, no. 1, p. 39, Jan. 2002.
[3.4] S. Ogura, C. F. Codella, N. Rovedo, J. F. Shepard, and J. Riseman, “A half micron MOSFET using double implanted LDD,” in IEDM Tech. Dig., p. 718, 1982.
[3.5] P. W. Li, E. S. Yang, Y. F. Yandg, J. O. Chu, and B. S. Meyerson, “SiGe pMOSFET’s with gate oxide fabricated by microwave electron cyclotron resonance plasma processing,” IEEE Electron Device Lett., vol. 15, no. 10, p. 402, 1994.
[3.6] I. S. Goh, J. F. Zhang, S. Hall, W. Eccleston, and K. Werner, “Electrical properties of plasma-grown oxide on MBE-grown SiGe ,” Semicond. Sci. Technol., vol. 10, no. 6, p. 818, 1995
[3.7] P. W. Li, H. K. Liou, E. S. Yang, S. S. Lyer, T. P. Smith III, and Z. Lu, “Formation of stoichiometric SiGe oxide by electron cyclotron resonance plasma,” Appl. Phys. Lett., vol. 60, no. 26, 29, p. 3265, 1992.
[3.8] Deepak K. Nayak, Ph. D. Dissertation, University of California Los Angeles, 1992
[3.9] F. K. LeGoues, R. Rosenberg, T. Nguyen, J. Himpsel, and B. S. Meyerson, “Oxidation studied of SiGe,” J. Appl. Phys., vol. 65, no. 4, 15, p. 1724, 1989.
[4.1] W. A. Hill, and C. C. Coleman, “A single frequency approximation for interface-state density determination, ” Solid State Electron., vol. 23, no. 9, p. 987, 1980.
[4.2] G. K. Dalapati, “Impact of strained-Si thickness and Ge out-diffusion on gate oxide quality for strained-Si surface channel n-MOSFETs , ” IEEE Trans. Electron Devices, vol. 53, no. 5, p. 1142, May 2006.
[4.3] K. Terada and H. Muta, “A New Method to Determine Effective MOSFET Channel Length, ” Jpn. J. Appl. Phys., p. 953, May 1979.
[4.4] J. G. J. Chern, P. Chang, R. F. Motta, and N. Godinho, “A new method to determine effective MOSFET channel length, ” IEEE Electron Devices Lett., p. 170, Spet. 1980.
[4.5] D. K. Schroder, “Semiconductor material and device characterization, ” second edition, p.225.
[5.1] N. Lukyanchikova, N. Garbar, M. Petrichuk, E. Simoen and C. Claeys, “Flicker noise in deep submicron nMOS transistors, ” Solid State Electron., vol. 4, no. 7, p. 1239, 2000.
[5.2] T. Boutchacha and G. Ghibaudo, “Low Frequency Noise Characterization of 0.18 μm Si CMOS Transistors, ” Phys. Stat. Sol. (a), p. 261, 1998.
[5.3] G. Ghibaudo, T. Boutchacha, “Electrical noise and RTS fluctuations in advanced CMOS devices, ” Microelectron. Reliab., p. 573, 2002.
[5.4] C. Claeys, A. Mercha and E. Simoen, “Low-frequency noise assessment for deep submicrometer CMOS technology nodes,” J. Electrochem. Soc., 151, p. G307, 2004.
[5.5] N. Giordano, “Defect motion and low-frequency noise in disordered metals,” Solid State Sci., vol. 3, no. 1, p. 27, 1989.
[5.6] E. Simoen and C. Claeys, in Noise and Fluctuations Control in Electronic Devices, A. Balandin, Editor, Chap. 8, American Scientific Publishers, Stevenson Ranch, CA 2002
[5.7] C. Surya and T. Y. Hsiang, “Theory and experiment on the 1/fγ noise in p-channel metal-oxide-semiconductor field-effect transistors at low drain bias,” Phys. Rev.B, vol. 33, p. 4898, 1986.
[5.8] A. van der Ziel, J. B. Anderson, A. N. Birbas, et al., “Shot noise in solid state diodes,” Solid-State Electron., 29, p. 1069, 1986.
[5.9] Aldert van der Ziel. Noise in Solid State Devices and Circuits. Wiley, New York, p. 120, 1986.
[5.10] F. N. Hooge, “1/f noise sources,” IEEE Trans. Electron Devices, vol. 40, p. 1926, 1994.
[5.11] K. H. Lundberg, “Noise sources in bulk CMOS,” 2002.
[5.12] A. L. McWhorter, “1/f noise and germanium surface properties,” In R. H. Kingston editor, Semiconductor Surface Physics, Philadelphia: University of Philadephia Press, p.207, 1957.
[5.13] F. N. Hooge, “1/f noise is no surface effect,” Phys. Lett., 29A(3), p.139, April 1969.
[5.14] G. Ghibaudo, and O. Roux-dit-Buisson, “Low frequency fluctuations in scaled down silicon CMOS devices status and tends,” in Proc. of ESSDERC’94, Edinburgh, U.K., Sept. 11–15, 1994, p. 693
[5.15] G. Ghibaudo, O. Roux, C. Nguyen-duc, F. Balestra, and J. Brini, “Improved analysis of low frequency noise in field-effect MOS transistors,” Phys. Stat. Sol (a), vol. 124, p. 571, 1991
[5.16] K. K. Hung, P. K. Ko, C. Hu, Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistor,” IEEE Trans. Electron Devices, vol. 37, p. 654, 1990.
[6.1] Y. A. Allogo, M. Marin, M. de Murcia, P. Llinares, D. Cottin, “1/f noise in 0.18 μm technology n-MOSFETs from subthreshold to saturation,” Solid-State Electron., 46, p. 977, 2002.
[6.2] L. K. J. Vandamme, X. Li, and D. Rigaud, “l/f Noise in MOS devices mobility or number fluctuations metal-oxide-semiconductor field-effect transistor, ” IEEE Trans. Electron Devices, vol. 41, p. 1936, 1994.
[6.3] A. D. Lambert, B. Alderman, R. J. P. Lander, E. H. C. Parker, and T. E. Whall, “Low frequency noise measurements of p-channel Si1-XGeX MOSFET’s, ” IEEE Trans. Electron Devices, vol. 46, p. 1484, 1999.
[6.4] W. C. Hua, M. H. Lee, P. S. Chen, M.-J. Tsai, and C. W. Liu, “Threading Dislocation Induced Low Frequency Noise in Strained-Si nMOSFETs, ” IEEE Electron Devices Lett., vol. 26, p. 667, 2005.
[6.5] Y. J. Song, J. W. Lim, B. Mheen, , “1/f Noise in Si0.8Ge0.2 pMOSFETs under Fowler–Nordheim stress, ” IEEE Electron Devices Lett., vol. 50, p. 1152, 2003.
[6.6] D. Onsongo, D. Q. Kelly, S. Dey, R. L.Wise, “Improved hot-electron reliability in strained-Si nMOS, ” IEEE Trans. Electron Devices, vol. 51, p. 2193, 2004.
[6.7] S. S. Chung, Y. R. Liu, C. F. Yeh, S. R. Wu, “A new observation of the germanium outdiffusion effect on the hot carrier and NBTI reliabilities in sub-100nm technology strained-SiSiGe CMOS devices, ” in VLSI Symp. Tech. Dig., p.86, 2005.
[6.8] Haldun Küflüoglu and M. A. Alam, “Theory of interface-trap-induced NBTI degradation for reduced cross section MOSFETs, ” IEEE Trans. Electron Devices, vol. 53, p. 1120, 2006.