簡易檢索 / 詳目顯示

研究生: 王子豪
Wang, Zi-Hao
論文名稱: 金屬修飾氧化鋅奈米結構系列應用於光電及其元件
Investigation of Metal-Modified Zinc Oxide Nanostructure for Fabricating Optoelectronic Devices and Their Applications
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 116
中文關鍵詞: 鋁摻雜氧化鋅奈米柱奈米片金奈米粒子修飾氧化鋅場發射光感測器低頻雜訊非酵素型葡萄糖感測器
外文關鍵詞: Al doped ZnO, nanorod, nanosheet, Au NPs-decorated ZnO, field emission, photodetector, low-frequency noise, Non-enzyme glucose sensor
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,主要藉由低溫水熱法及水溶液成長金屬修飾氧化鋅奈米結構,並分別應用到紫外光波段之金屬-半導體-金屬結構光感測器、場發射器和葡萄糖感測器元件之應用,其中論文主軸可分為三部份,第一部分主要為鋁摻雜氧化鋅奈米柱紫外光感測器之研究;第二部分為鋁摻雜氧化鋅奈米柱場發射元件之研究及金奈米粒子修飾氧化鋅奈米片之研究;最後為氧化鋅奈米片製作葡萄糖感測器之研究。
    在本文一開始,主要介紹藉由低溫水熱法成長具低頻雜訊之鋁摻雜氧化鋅奈米柱。鋁摻雜氧化鋅奈柱具有六角纖鋅礦結構及尖銳的表面形態,平均長度和直徑約為1.45 μm和68 nm。我們成功製造出鋁摻雜氧化鋅奈米金屬-半導體-金屬紫外光感測器。施加1V順向偏壓,其紫外光對可見光的拒斥比約為1.51×103,元件量測光響應度為181 A/W。在低頻雜訊的分析,此光感測器的等效雜訊功率估計為1.17 × 10-11 W,其相對應檢測度4.03 × 1012 cm·Hz0.5W−1。結果說明鋁摻雜可以有利於提升感測器的光響應。
    第二部分有兩個研究主題:分別為鋁摻雜氧化鋅納米柱應用於場發射元件與金納米粒子修飾氧化鋅納米片應用於場發射元件。當元件分別在暗箱中和紫外光照射下量測元件時,場發射元件能具有較低的導通電場,對於鋁摻雜的氧化鋅場發射元件在暗箱中和紫外光照射下分別為2.35和1.51V /μm,對於純氧化鋅奈米片與金奈米粒子裝飾氧化鋅奈米片的場發射元件為6.04和4.91V /μm。 對於鋁摻雜氧化鋅奈米柱的場發射元件,場增強因子提升到10137,對於金奈米粒子修飾氧化鋅奈米片的場發射元件,場增強因子提升到9298。這也可歸因於鋁奈米粒子和金奈米粒子可通過場發射收集更多電子並使電子容易從奈米粒子發射。
    最後,我們成功通過氧化鋅奈米片,應用於葡萄糖感測器元件,所製作葡萄糖感測器元件具有43.4μA/cm2-mM的靈敏度,而回歸係數值約為0.99,這可以歸因於改變奈米結構有助於提升吸附面積,使得電子交換傳遞的效率提升。

    In this dissertation, the metal-modified ZnO nanostructures were grown on an a-ZnO seed layer via the low-temperature hydrothermal method (90 °C) and applied to metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD), field emission devices and glucose sensors. This dissertation is divided into three parts. In the first part, Al-doped ZnO nanorods UV PD are investigated. In the second part, Al-doped ZnO nanorods field emission devices and the ZnO nanosheet that is decorated by Au nanoparticle is discussed. Finally, the third part discusses glucose sensors that fabricated by the ZnO nanosheet.
    We successfully fabricate the Al-doped ZnO nanorods UV PD. UV-to-visible rejection ratio is about 1.51×103, and the Responsibility to Light is 181 A/W when biased at 1 V. Analyzing low-frequency noise of device, finding that the noise equivalent power (NEP) of the light sensor is about 1.17 × 10-11 W, and the corresponding detectivity is 4.03 ×1012 m·Hz0.5W−1. The results show that aluminum doping is beneficial to enhance the photo response of the sensor.
    There are two research topics in the second part, Al-doped ZnO nanorods field emission (FE) devices, Au Nanoparticles (NPs) -decorated ZnO nanosheet FE devices. When the devices was measured in the dark box and the UV irradiation, field emission device has lower turn-on electric field, 2.35 and 1.51 V/μm for Al-doped ZnO nanorods FE device, 6.04 and 4.91 V/μm for Au NPs-decorated ZnO nanosheets FE device. And the corresponding field enhancement factors are enhanced to 10137 for Al-doped ZnO nanorods FE device, 9298 for Au NPs-decorated ZnO nanosheets device. This can be attributed to Al NPs and Au NPs can collect more electrons by field emission and make electrons emit easily from the NP.
    Finally, ZnO nanosheet were successfully applied to glucose sensors. The sensitivity of the glucose sensors is 43.4μA/cm2-mM, and regression coefficient is about 0.99. The reason why the transmission speed was enhanced is due to the transmission speed of electron is much higher when the adsorption area of nanostructure is increased.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement (in Chinese) V Contents VI Table Captions IX Figure Captions X CHAPTER 1. Introduction 1.1 Background and Properties of ZnO 1 1.2 Techniques for Synthesizing ZnO Nanostructures 2 1.2.1 Hydrothermal Growth Methods of ZnO Nanorods (NRs) 2 1.2.2 Aqueous Solution Growth Method of ZnO Nanosheets 3 1.3 Photodetector Theory 3 1.4 Theory of Field Emission (FE) 4 1.5 Motivation and Glucose Biosensors 7 1.6 Motivations and Thesis Organization 10 References 12 CHAPTER 2. Experimental Section 2.1 Fabrication of Al-doped ZnO Nanorods UV Photodetector and Their Application for Field Emission 26 2.1.1 Fabrication of Al-doped ZnO Nanorods UV Photodetector 26 2.1.2 Fabrication of Al-doped ZnO Nanorods Field Emission 27 2.2 Fabrication of Au Nanoparticles-decorated ZnO Nanosheets Field Emission 27 2.3 Fabrication of ZnO Nanosheets Glucose Biosensors 28 CHAPTER 3. Ultraviolet Photodetectors Based on Aluminum-doped ZnO Nanorods Array 3.1 Vertical AZO Nanosheets-based UV Photodetectors 32 3.2 Material and Structure Analyses 32 3.3 Characteristics of Al-doped ZnO Nanorods UV Photodetector 34 3.4 The Low-Frequency Noise Characteristics 36 3.2 Summary 38 References 39 CHAPTER 4. Metal-Modified on ZnO Nanostructure Field Emission 4.1 Characteristics of Al-doped ZnO Nanorods Field Emission 56 4.1.1 Material and Structure Analyses 56 4.1.2 Characteristics of Al-doped ZnO Nanorods Field Emission 59 4.1.3 Summary 61 4.2 Characteristics of Au Nanoparticles-decorated ZnO Nanosheets Field Emission 62 4.2.1 Material and Structure Analyses 62 4.2.2 Characteristics of Au Nanoparticles-decorated ZnO Nanosheets Field Emission 64 4.2.3 Summary 66 References 68 CHAPTER 5. Rapid Synthesis of ZnO Nanosheets at Room Temperature for Non-Enzyme Glucose Biosensors 5.1 Material and Structure Analyses 93 5.2 Rapid Synthesis of ZnO Nanosheets Non-Enzyme Glucose Biosensors 94 5.3 Summary 96 References 97 CHAPTER 6. Conclusions and Prospects 6.1 Conclusions 112 6.2 Future prospects 113 Publication List of Zi-Hao Wang 115

    [1] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, "Field emission from well-aligned zinc oxide nanowires grown at low temperature," Appl. Phys. Lett., vol. 81, no. 19, pp. 3648-3650, Nov. 4 2002.
    [2] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, "Fully sealed, high-brightness carbon-nanotube field-emission display," Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131, Nov. 15 1999.
    [3] M. J. Lancaster, J. Powell, and A. Porch, "Thin-film ferroelectric microwave devices," Superconductor Science & Technology, vol. 11, no. 11, pp. 1323-1334, Nov. 20 1998.
    [4] S. T. Tan, B. J. Chen, X. W. Sun, and W. J. Fan, "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition," J. Appl. Phys., vol. 98, no. 1, pp. 013505-1-013505-5, Jul. 1 2005.
    [5] P. Erhart, K. Albe, and A. Klein, "First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects," Phys. Rev. B: Condens. Matter, vol. 73, no. 20, pp. 205203-1- 205203-9, May 2006.
    [6] L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, and X. Fang, “An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt,” Adv. Mater., vol. 24, no. 17, pp. 2305–2309, May. 2 2012.
    [7] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3654-1656, May. 3 2004.
    [8] H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett., vol. 96, no. 10, pp. 101116, May 8 2010.
    [9] G. F. Boesen, and J. E. Jacobs, “ZnO field-effect transistor” Proceedings of the IEEE., vol. 56, no. 11, pp. 2094 - 2095, 1968.
    [10] R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, “Power‐dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett., vol. 49, no. 12, pp. 687, 1986.
    [11] C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang and H. Fu, “Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation,” Chem. Commun., vol. 48, no. 23, pp. 2858-2860, 2012.
    [12] M. Saito, and S. Fujihara, “Large photocurrent generation in dye-sensitized ZnO solar cells,” Energy Environ. Sci., vol. 1, no. 2, pp. 280–283, 2008.
    [13] Y. B. Li, Y. Bando, and D. Golberg “ZnO nanoneedles with tip surface perturbations: Excellent field emitters,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3603-3605, May. 3 2004.
    [14] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth, vol. 225 no. 2-4, pp. 110-113, May. 2001.
    [15] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett, vol. 94, no.20, pp. 203106, May. 18 2009.
    [16] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology, vol. 20, no. 4, pp. 045501, Jan. 28 2008.
    [17] S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater., vol. 21, no. 23, pp. 4464-4469, Dec. 6 2011.
    [18] A. Sahana, A. Banerjee, S. Lohar, A. Banik, S. K. Mukhopadhyay, D. A. Safin, M. G. Babashkina, M. Bolte, Y. Garcia and D. Das, “FRET based tri-color emissive rhodamine–pyrene conjugate as an Al3+ selective colorimetric and fluorescence sensor for living cell imaging,” Dalton Trans., vol. 42, no. 37, pp. 13311-13314, 2013.
    [19] J. Guo, J. Zheng, X. Song, and K. Sun, “Synthesis and conductive properties of Ga-doped ZnO nanosheets by the hydrothermal method,” Mater. Lett., vol. 97, pp. 34–6, Apr. 15, 2013.
    [20] Yi-Hsing Liu, Sheng-Joue Young, Liang-Wen Ji, and Shoou-Jinn Chang, Fellow, “Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method,” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2924–2927, Sep. 2015.
    [21] Sheng-Joue Young, and Yi-Hsing Liu, “Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure,” Microelectron. Eng., vol. 148, pp. 14–16, Dec. 2015.
    [22] H. F. Hu, and T. He, “Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping” Acta Phys. Chim. Sin., vol. 31, no. 7, pp. 1421−1429, Jul. 15 2015.
    [23] Cheng-Liang Hsu, and Shoou-Jinn Chang “Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application,” Small, vol. 10, no. 22, pp. 4562–4585, Nov. 2014.
    [24] C. L. Hsu, C. W. Su, and T. J. Hsueh , “Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure,” RSC Adv., vol. 4, no. 6, pp. 2980–2983, 2014.
    [25] M. Hwang, J. H. Choi, Y. H. Kwon, H. K. Cho, S. W. Kim, J. H. Lim, and J. Joo, “Effects of In or Ga doping on the growth behavior and optical properties of ZnO nanorods fabricated by hydrothermal process,” Phys. Status Solidi A, vol. 210, no. 8, pp. 1552–1556, 2013.
    [26] A. Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, and T. Kerdjac, “Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates,” Mater. Sci. Semicond. Process., vol. 28, pp. 54–58, Dec. 2014.
    [27] C. H. Kwak, B. H. Kim, C. I. Park, S. Y. Seo, S. H. Kim, S. W. Han, “Synthesis and microstructural properties of ZnO nanorods on Ti-buffer layers,” J. Cryst. Growth, vol. 314, no. 1, pp. 264–267, Jan. 2011.
    [28] S. Maiti, U. N. Maiti, and K. K. Chattopadhyay, “Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: Candidate for transparent flexible electronics,” CrystEngComm, vol. 14, no. 23, pp. 8244–8252, 2012.
    [29] L. Vayssieres, “Growth of arrayed nanorods and nanowires of Zno from aqueous solutions,” Adv. Mater., vol. 15, no. 5, pp. 464–466, Mar. 2003.
    [30] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties,” Nanatechnol., vol. 18, pp. 115603-1-115603-7, 2007.
    [31] S. S. Warule, N. S. Chaudhari, R. T. Khare, J. D. Ambekar, B. B. Kale, and M. A. More, “Single step hydrothermal approach for devising hierarchical Ag–ZnO heterostructures with significant enhancement in field emission performance,” CrystEngComm., vol. 15, no. 37, pp. 7475−7483, 2013.
    [32] S. J. Chang, B. G. Duan, C. W. Liu ,C. H. Hsiao, S. J. Young, and C. S. Huang “UV Enhanced Indium-Doped ZnO Nanorod Field Emitter,” IEEE Trans. Electron Devices, vol. 60, no. 11, pp. 3901−3906, 2013.
    [33] L. Schmidt-Mende, and J. L. M. Driscoll, “ZnO–nanostructures, defects, and devices,” Mater. Today, vol. 10, pp. 40−48, 2007.
    [34] Ming-Yueh Chuang, Hsin-Chieh Yu, Yan-Kuin Sua, Chih-Hung Hsiao, Tsung-Hsien Kao, Chien-Sheng Huang, Yu-Chun Huang, Jeng-Je Tsai, and San-Lein Wu “Density-controlled and seedless growth of laterally bridged ZnO nanorod for UV photodetector applications,” Sens. Actuator B-Chem., vol. 202, pp. 810−819,Oct. 2014.
    [35] J. R. Huang, Y. J. Wu, C. P. Gu, M. H. Zhai, L. Yu, M. Yang, and J. H. Liu, “Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property,” Sens. Actuators B, Chem., vol. 146, no. 1, pp. 206–212, Apr. 8, 2010.
    [36] H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, “Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route,” Nanotechnology, vol. 19, no. 12, p. 125603, Mar. 2008.
    [37] R. K. Willardson, E. R. Weber, T. D. Moustakas, and J. I. Pankove, Gallium-Nitride (GaN) II (Vol. 57). Academic Press.,1998
    [38] C. H. Hsiao, and Shoou-Jinn Chang “Growth of II-VI Compound Semiconductors and their Optoelectronic Properties,” National Cheng Kung University, Jun. 2010.
    [39] M. Y. Chuang, and Yan-Kuin Su “Research on Growth Mechanism of Laterally Bridged ZnO Nanostructure and their Optoelectronic Application,” National Cheng Kung University, 2014.
    [40] J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang, and M. H. Juang, “pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures,” Journal of Nanomaterial, vol. 2013, 2013.
    [41] S. M. Sze and K. K. Ng,Physics of Semiconductor devices : John wiley & sons, 2006
    [42] P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors”, ACS Nano, vol. 6, no. 7, pp.5988-5994, Jul. 2012.
    [43] K. Kinoshtia, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi, and S. Kishida, “Opposite bias polarity dependence of resistive switching in n -type Ga-doped-ZnO and p -type NiO thin films,” Appl. Phys. Lett., vol. 96, no. 14, pp.143505, Apr. 5 2010.
    [44] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, no. 12, pp. 1209-1218, 1971.
    [45] S. R. Jian, G. J. Chen, S. K. Wang, T. C. Lin, S. C. Jang, J. Y. Juang, Y. S. Lai, J. Y. Tseng, “Rapid thermal annealing effects on the structural and nanomechanical properties of Ga-doped ZnO thin films,” Surface and Coatings Technology, vol. 231, pp. 176-179, Sep. 2013.
    [46] G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale, vol. 6, no. 3, pp. 1840-1847, 2014.
    [47] Chung-Wei Liu, and Shoou-Jinn Chang “Optoelectronic and Structure Properties of Diluted Magnetic Semiconductor Based on ZnO Nanorods”, Jun. 2008.
    [48] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, L. W. Ji, Y. J. Hsu, and S. L.Wu, “Low-frequency noise characteristics of ZnO nanorods Schottky barrier photodetectors,” IEEE Sensors J., vol. 13, no. 6, pp. 2115–2119, Jan. 2013.
    [49] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, "Field emission from well-aligned zinc oxide nanowires grown at low temperature," Appl. Phys. Lett., vol. 81, no. 19, pp. 3648-3650, Nov. 4 2002.
    [50] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, "Fully sealed, high-brightness carbon-nanotube field-emission display," Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131, Nov. 15 1999.
    [51] M. J. Lancaster, J. Powell, and A. Porch, "Thin-film ferroelectric microwave devices," Superconductor Science & Technology, vol. 11, no. 11, pp. 1323-1334, Nov. 20 1998.
    [52] R. H. Fowler, and L. W. Nordheim, “Electron emission in intense field”, Proc. R. SOC. A229, pp. 173-181, 1928.
    [53] R. E. Burgess, H. Kroemer, and J. M. Honston, “Corrected value of Fowler-Nordheim field emission function v(y) and s(y)”, Phys. Rev., vol. 90, No. 4, pp. 515-515, 1953.
    [54] Yu-Ying Hsu, and Huang-Chung Cheng “Study on the Lateral Field Emission Device Using the Metal Thin Films and Carbon Nanotubes as the Emitter Materials”, National Chiao Tung University, 2008.
    [55] Rong-Ming Ko, and Shui-Jinn Wang “Study on the Growth Mechanisms of One-Dimensional Tungsten Oxide Nanostructures and Their Applications in Gas Sensors and Field Emitters”, National Cheng Kung University, Jun. 2009.
    [56] L. C. Clark, Jr. and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Ann N Y Acad Sci, vol. 102, pp. 29-45, Oct 31 1962.
    [57] S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006.
    [58] Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012.
    [59] D. Pletcher, "Electrocatalysis - Present and Future," Journal of Applied Electrochemistry, vol. 14, no. 4, pp. 403-415, 1984.
    [60] L. D. Burke, "Premonolayer Oxidation and Its Role in Electrocatalysis," Electrochimica Acta, vol. 39, no. 11-12, pp. 1841-1848, Aug 1994.
    [61] H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, "Advances in non-enzymatic glucose sensors based on metal oxides," Journal of Materials Chemistry B, vol. 4, no. 46, pp. 7333-7349, 2016.
    [62] Steckhan E., "Organic synthese with with electrochemically regenerable redox systems, " Topic in Current Chemistry, Vol.142, Steckhan E. eds, Springer-Verlag,Berlin Heidelberg, 1987.
    [63] M. E. Tess and J. A. Cox, "Chemical and biochemical sensors based on advances in materials chemistry," Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 1-2, pp. 55-68, 1999.
    [64] P. T. K. W. R. Heineman, "Cyclic Voltammetry."
    [65] Wang, Analytical Electrochemistry, 2nd Edition. John Wiley & Sons, Inc.,New York.
    [66] Bard, A. J., Faulkner, L. R., Leddy,J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals andapplications (Vol. 2). New York: wiley.
    [67] J. E. B. Randles, "Kinetics of rapid electrode reactions," Discussions of the Faraday Society, vol. 1, 1947.
    [68] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct., vol. 34, pp. 3-32, 2003.
    [69] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions,” Adv. Mater., vol. 15, no. 5, pp. 464–466, Mar. 4 2003.
    [70] S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr, “Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2” Science, vol. 297, no. 5590, pp. 2243-2245, Sep. 28 2002.
    [71] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett., vol. 2, no. 2, pp. 101–104, Feb. 2002.
    [72] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell and W.C. Harsch, “Electrical properties of bulk ZnO,” Solid State Commun., vol. 105, no. 6, pp. 399-401, Feb. 1998.
    [73] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, “UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering,” Adv. Mater., vol. 18, no. 20, pp. 2720–2724, Oct. 17 2006.
    [74] Y. H. Liu, S. J. Young, L.W. Ji, and S. J. Chang, “Ga-Doped ZnO Nanosheet Structure-Based Ultraviolet Photodetector by Low-Temperature Aqueous Solution Method” IEEE Trans. Electron Devices, vol. 62, no. 9, pp. 2924–2927, Sep. 2015.
    [75] C. C. Yang, Y. K. Su, C. H. Hsiao, T. H. Kao, Y. M. Peng, M. Y. Chuang, B. C.Wang, and S. L. Wu “Low-Frequency Noise Characteristics of Gallium-Doped ZnO Nanosheets as Photodetectors,” J. Electrochem. Soc., vol. 161, no. 6, pp. H399-H403, 2014.
    [76] Y. K. Su, S. M. Peng, L. W. Ji, C. Z. Wu, W. B. Cheng, and C. H. Liu “Ultraviolet ZnO Nanorod Photosensors” Langmuir, vol. 26, no. 1, pp. 603-606, Jan. 5 2010.
    [77] M.C. Hamilton, and J. Kanicki, “Organic polymer thin-film transistor photosensors,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 4, pp. 840-848, Jul-Aug 2004.
    [78] G. Yu, Y. Cao, J. Wang, J. McElvain, and A. J. Heeger, “High sensitivity polymer photosensors for image sensing applications,” Synth. Met., vol. 102, no. 1-3, pp. 904-907, Jun. 1999.
    [79] J.G. Lu, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, and S. Fujita “ZnO-based thin films synthesized by atmospheric pressure mist chemical vapor deposition,” J. Cryst. Growth, vol. 299, no. 1, pp. 1-10, Feb. 1 2007.
    [80] B. Houng, and C. J. Huang, “Structure and properties of Ag embedded aluminum doped ZnO nanocomposite thin films prepared through a sol–gel process,” Surface and Coatings Technology, vol. 201, no. 6, pp. 3188-3192, Dec. 4 2006.
    [81] L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, and X. Fang, “An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt,” Adv. Mater., vol. 24, no. 17, pp. 2305–2309, May. 2 2012.
    [82] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3654-1656, May. 3 2004.
    [83] H. K. Liang, S. F. Yu, and H. Y. Yang, “Directional and controllable edge-emitting ZnO ultraviolet random laser diodes,” Appl. Phys. Lett., vol. 96, no. 10, pp. 101116, May 8 2010.
    [84] G. F. Boesen, and J. E. Jacobs, “ZnO field-effect transistor” Proceedings of the IEEE., vol. 56, no. 11, pp. 2094 - 2095, 1968.
    [85] R. M. Fortenberry, R. Moshrefzadeh, G. Assanto, X. Mai, E. M. Wright, C. T. Seaton, and G. I. Stegeman, “Power‐dependent coupling and fast switching in distributed coupling to ZnO waveguides,” Appl. Phys. Lett., vol. 49, no. 12, pp. 687, 1986.
    [86] C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang and H. Fu, “Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation,” Chem. Commun., vol. 48, no. 23, pp. 2858-2860, 2012.
    [87] M. Saito, and S. Fujihara, “Large photocurrent generation in dye-sensitized ZnO solar cells,” Energy Environ. Sci., vol. 1, no. 2, pp. 280–283, 2008.
    [88] Y. B. Li, Y. Bando, and D. Golberg “ZnO nanoneedles with tip surface perturbations: Excellent field emitters,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3603-3605, May. 3 2004.
    [89] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu, and H. Shen, “ZnO Schottky ultraviolet photodetectors,” J. Cryst. Growth, vol. 225 no. 2-4, pp. 110-113, May. 2001.
    [90] L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng “Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays,” Appl. Phys. Lett, vol. 94, no.20, pp. 203106, May. 18 2009.
    [91] Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, “High-performance UV detector made of ultra-long ZnO bridging nanowires,” Nanotechnology, vol. 20, no. 4, pp. 045501, Jan. 28 2008.
    [92] S. Bai, W. Wu, Y. Qin, N. Cui, D. J. Bayerl, and X. Wang, “High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates,” Adv. Funct. Mater., vol. 21, no. 23, pp. 4464-4469, Dec. 6 2011.
    [93] B. Liu, and H. C. Zeng, “Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4430-4431, Apr. 16 2003.
    [94] B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition,” Thin Solid Films, vol. 366, no. 1-2, pp. 107–110, May. 1 2000.
    [95] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B- Condensed Matter, vol. 403, no. 19-20, pp. 3713-3717, Oct. 1 2008.
    [96] M. Li, J. Zhai, H. Liu, Y. L. Song, L. Jiang, and D. B. Zhu, “Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films,” J. Phys. Chem. B, vol. 107, no. 37, pp. 9954-9957, Sep. 18 2003.
    [97] A. Sahana, A. Banerjee, S. Lohar, A. Banik, S. K. Mukhopadhyay, D. A. Safin, M. G. Babashkina, M. Bolte, Y. Garcia and D. Das, “FRET based tri-color emissive rhodamine–pyrene conjugate as an Al3+ selective colorimetric and fluorescence sensor for living cell imaging,” Dalton Trans., vol. 42, no. 37, pp. 13311-13314, 2013.
    [98] H. F. Hu, and T. He, “Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping” Acta Phys. Chim. Sin., vol. 31, no. 7, pp. 1421−1429, Jul. 15 2015.
    [99] J. J. Wu, and S. C. Liu, “Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition,” Adv. Mater., vol. 14, no. 3, pp. 215−218, Feb. 5, 2002.
    [100] Q. Li, V. Kumar, Y. Li, H. T. Zhang, T. J. Marks, and R.P.H. Chang, “Fabrication of ZnO nanorods and nanotubes in aqueous solutions,” Chem. Mater., vol. 17, no. 5, pp. 1001–1006, Mar. 8, 2005.
    [101] Y. Sun, G. M. Fuge, and M.N.R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods,” Chem. Phys. Lett., vol. 396, no. 1-3, pp. 21–26, Sep. 21, 2004.
    [102] C. T. Hsieh, S. Y. Yang, and J. Y. Lin, “Electrochemical deposition and superhydrophobic behavior of ZnO nanorod arrays,” Thin Solid Films, vol. 111, no.34, pp. 12673–12676, Aug. 30, 2007.
    [103] A. B. Taylor, P. Michaux, A. S. M. Mohsin, and J. W M. Chon, “Electron-beam lithography of plasmonic nanorod arrays for multilayered optical storage,” Opt. Express, vol. 22, no. 11, pp. 13234–13243, Jun. 2, 2014.
    [104] S. J. Young, C. C. Yang, and L. T. Lai, “Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors,” J. Electrochem. Soc., vol. 164, no. 5, pp. B3013–B3028, 2017.
    [105] C. Ye, Y. Bando, X. Fang, G. Shen and D. Golberg, “Enhanced Field Emission Performance of ZnO Nanorods by Two Alternative Approaches,” J. Solid State Chem., vol. 178, no. 6, pp. 1864–1873, Jun. 2005.
    [106] J. L. Wang, P. Y. Yang, T. Y. Hsieh, C. C. Hwang, and M. H. Juang, “pH-Sensing Characteristics of Hydrothermal Al-Doped ZnO Nanostructures,” Journal of Nanomaterial, vol. 2013, 2013.
    [107] S. M. Sze and K. K. Ng,Physics of Semiconductor devices : John wiley & sons, 2006
    [108] P. A. Hu, Z. Z. Wen, L. F. Wang, P. H. Tan, and K. Xiao, “Synthesis of Few-Layer GaSe Nanosheets for High Performance Photodetectors”, ACS Nano, vol. 6, no. 7, pp.5988-5994, Jul. 2012.
    [109] K. Kinoshtia, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi, and S. Kishida, “Opposite bias polarity dependence of resistive switching in n -type Ga-doped-ZnO and p -type NiO thin films,” Appl. Phys. Lett., vol. 96, no. 14, pp.143505, Apr. 5 2010.
    [110] S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron., vol. 14, no. 12, pp. 1209-1218, 1971.
    [111] S. R. Jian, G. J. Chen, S. K. Wang, T. C. Lin, S. C. Jang, J. Y. Juang, Y. S. Lai, J. Y. Tseng, “Rapid thermal annealing effects on the structural and nanomechanical properties of Ga-doped ZnO thin films,” Surface and Coatings Technology, vol. 231, pp. 176-179, Sep. 2013.
    [112] G. C. Park, S. M. Hwang, J. H. Lim, and J. Joo, “Growth behavior and electrical performance of Ga-doped ZnO nanorod/p-Si heterojunction diodes prepared using a hydrothermal method,” Nanoscale, vol. 6, no. 3, pp. 1840-1847, 2014.
    [113] J. Zhang, L. D. Sun, C. S. Liao, and C. H. Yan, “A simple route towards tubular ZnO,” Chem. Commun., vol. 3, pp. 262–263, 2002.
    [114] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, "Field emission from well-aligned zinc oxide nanowires grown at low temperature," Appl. Phys. Lett., vol. 81, no. 19, pp. 3648-3650, Nov. 4 2002.
    [115] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, "Fully sealed, high-brightness carbon-nanotube field-emission display," Appl. Phys. Lett., vol. 75, no. 20, pp. 3129-3131, Nov. 15 1999.
    [116] M. J. Lancaster, J. Powell, and A. Porch, "Thin-film ferroelectric microwave devices," Superconductor Science & Technology, vol. 11, no. 11, pp. 1323-1334, Nov. 20 1998.
    [117] S. T. Tan, B. J. Chen, X. W. Sun, and W. J. Fan, "Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition," J. Appl. Phys., vol. 98, no. 1, pp. 013505-1-013505-5, Jul. 1 2005.
    [118] P. Erhart, K. Albe, and A. Klein, "First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects," Phys. Rev. B: Condens. Matter, vol. 73, no. 20, pp. 205203-1- 205203-9, May 2006.
    [119] H. Yu, Z. Zhang, M. Han, X. Hao, and F. Zhu, "A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays," J Am Chem Soc, vol. 127, no. 8, pp. 2378–2379, Mar. 2 2005.
    [120] S. J. Young, C. C. Yang, and L. T. Lai, "Review—Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors," J. Electrochem. Soc., vol. 164, no. 5, pp. B3013-B3028, 2017.
    [121] C. X. Xu, X. W. Sun, and B. J. Chen, "Field emission from gallium-doped zinc oxide nanofiber array," Appl. Phys. Lett., vol. 84, no. 9, pp. 1540-1542, Mar. 1 2004.
    [122] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, "Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation," J. Phys. Chem. B, vol. 109, no. 7, pp. 2526-2531, Feb. 24 2005.
    [123] S. J. Chang, B. G. Duan, C. W. Liu, C. H. Hsiao, S. J. Young, and C. S. Huang, "UV Enhanced Indium-Doped ZnO Nanorod Field Emitter," IEEE Trans. Electron Devices, vol. 60, no. 11, pp. 3901-3906, Nov. 2013.
    [124] H. J. Zhu, Y. Liang, X. Y. Gao, R. F. Guo, and Q. M. Ji, "Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method," Braz. J. Phys., vol. 45, no. 3, pp. 308-313, Jun. 2015.
    [125] J. Liu, L. L. Xu, B. Wei, W. Lv, H. Gao, and X. T. Zhang, "One-step hydrothermal synthesis and optical properties of aluminium doped ZnO hexagonal nanoplates on a zinc substrate," Crystengcomm, vol. 13, no. 5, pp. 1283-1286, 2011.
    [126] J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, T. Okada, and M. Hara, "Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor," Nanotechnology, vol. 17, no. 10, pp. 2567-73, May 28 2006.
    [127] S. J. Chang, B. G. Duan, C. H. Hsiao, C. W. Liu, and S. J. Young, "UV Enhanced Emission Performance of Low Temperature Grown Ga-Doped ZnO Nanorods," IEEE Photonics Technol. Lett., vol. 26, no. 1, pp. 66-69, Jan. 1 2014.
    [128] Y. H. Liu, S. J. Young, L. W. Ji, and S. J. Chang, "UV Enhanced Field Emission Properties of Ga-Doped ZnO Nanosheets," IEEE Trans. Electron Devices, vol. 62, no. 6, pp. 2033-2037, Jun. 2015.
    [129] L. T. Lai, S. J. Young, Y. H. Liu, Z. D. Lin, and S. J. Chang, "UV Enhanced Field Emission Properties of ZnO Nanosheets With Different NaOH Concentration," IEEE Trans. Nanotechnol., vol. 14, no. 4, pp. 776-781, Jul. 2015.
    [130] Z. H. Wang, H. C. Yu, C. C. Yang, H. T. Yeh, and Y. K. Su, "Low-Frequency Noise Performance of Al-Doped ZnO Nanorod Photosensors by a Low-Temperature Hydrothermal Method," IEEE Trans. Electron Devices, vol. 64, no. 8, pp. 3206-3212, Aug. 2017.
    [131] A. Escobedo-Morales and U. Pal, "Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping," Appl. Phys. Lett., vol. 93, no. 19, pp. 193120-1-193120-3, Nov. 10 2008.
    [132] X. Zhou, T. Lin, C. Wu, X. Zeng, D. Jiang, Y. A. Zhang, and T. Guo, "Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation," ACS Appl Mater Interfaces, vol. 5, no. 20, pp. 10067-10073, Oct. 23 2013.
    [133] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, and D. P. Yu, "Morphological effects on the field emission of ZnO nanorod arrays," Appl. Phys. Lett., vol. 86, no. 20, pp. 203115-1-203115-3, May 16 2005.
    [134] Y. Huang, Y. Zhang, Y. Gu, X. Bai, J. Qi, Q. Liao, and J. Liu, "Field emission of a single in-doped ZnO nanowire," J. Phys. Chem. C, vol. 111, no. 26, pp. 9039-9043, Jul. 5 2007.
    [135] Y. H. Liu, Sheng-Joue Young, L. W. Ji, T. H. Meen, C. H. Hsiao, C. S. Huang, and S. J. Chang, "UV Enhanced Field Emission Performance of Mg-Doped ZnO Nanorods," IEEE Trans. Electron Devices, vol. 61, no. 5, pp. 1541-1545, May 2014.
    [136] B. E. Sernelius, K. Berggren, Z. Jin, I. I. Hamberg, and C. G. Granqvist, "Band-gap tailoring of ZnO by means of heavy Al doping," Phys Rev B Condens Matter, vol. 37, no. 17, pp. 10244-10248, Jun. 15 1988.
    [137] F. K. Shan and Y. S. Yu, "Band gap energy of pure and Al-doped ZnO thin films," J. Eur. Ceram. Soc., vol. 24, no. 6, pp. 1869-1872, 2004.
    [138] C. C. Yang, Y. K. Su, M. Y. Chuang, H. C. Yu, and C. H. Hsiao, "Enhanced Field Emission Properties of Ag Nanoparticle-Decorated ZnO Nanorods Under Ultraviolet Illumination," IEEE Trans. Electron Devices, vol. 62, no. 7, pp. 2300-2305, Jul. 2015.
    [139] C. H. Chen, S. J. Chang, S. P. Chang, Y. C. Tsai, I. C. Chen, T. J. Hsueh, and C. L. Hsu, "Enhanced field emission of well-aligned ZnO nanowire arrays illuminated by UV," Chem. Phys. Lett., vol. 490, no. 4-6, pp. 176-179, Apr. 26 2010.
    [140] S. J. Young and Y. H. Liu, "Enhanced Field Emission Properties of Two-Dimensional ZnO Nanosheets Under UV illumination," IEEE J. Sel. Top. Quantum Electron., vol. 21, no. 4, pp. 9100304–1-9100304-4, Jul. / Aug. 2015.
    [141] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications, Journal of Physics: Condensed Matter, 16, R829 (2004).
    [142] C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z.L. Wang, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photonics, 7, 752 (2013).
    [143] Taabouche, A. Bouabellou, F. Kermiche, F. Hanini, Y. Bouachiba, A. Grid, and T. Kerdjac, Properties of cobalt-doped zinc oxide thin films grown by pulsed laser deposition on glass substrates, Mater. Sci. Semicond. Process., 28, 54 (2014).
    [144] H. Kwak, B. H. Kim, C. I. Park, S. Y. Seo, S. H. Kim, S. W. Han, Synthesis and microstructural properties of ZnO nanorods on Ti-buffer layers, J. Cryst. Growth, 314, 264 (2011).
    [145] L. Vayssieres, Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions, Adv. Mater., 15, 464 (2003).
    [146] S. Maiti, U. N. Maiti, and K. K. Chattopadhyay, Three dimensional ZnO nanostructures realized through a polymer mediated aqueous chemical route: candidate for transparent flexible electronics, CrystEngComm, 14, 8244 (2012).
    [147] S. S. Warule, N. S. Chaudhari, R. T. Khare, J. D. Ambekar, B. B. Kale, and M. A. More, Single step hydrothermal approach for devising hierarchical Ag–ZnO heterostructures with significant enhancement in field emission performance, CrystEngComm, 15, 7475 (2013).
    [148] C. Yang, Y. K. Su, M. Y. Chuang, H. C. Yu, C. H. Hsiao, Enhanced Field Emission Properties of Ag Nanoparticle-Decorated ZnO Nanorods Under Ultraviolet Illumination, IEEE Trans. Electron Devices, 62, 2300 (2015).
    [149] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett., 84, 3654 (2004).
    [150] H. Kind, H. Q. Yan, B. Masser, M. Law, and P. D. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches, Adv. Mater., 14, 158 (2002).
    [151] K. Keis, E. Magnusson, H. Lindstrom, S. E. Lindquist, and A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes, Sol. Energy Mater. Sol. Cells, 73, 51 (2002).
    [152] L. T. Hoa, K. G. Sun, and S. H. Hur, Highly sensitive non-enzymatic glucose sensor based on Pt nanoparticle decorated graphene oxide hydrogel, Sens. Actuator B-Chem., 210, 618 (2015).
    [153] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Efficient field emission from ZnO nanoneedle arrays, Appl. Phys. Lett., 83, 144 (2003).
    [154] A. J. Heeger, I. D. Parker, and Y. Yang, Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling, Synth. Met., 67, 23 (1994).
    [155] Banerjee, S. H. Jo, and Z. F. Ren, Enhanced Field Emission of ZnO Nanowires, Adv. Mater., 16, 2028 (2004).
    [156] S. Senda, Y. Sakai, Y. Mizuta, S. Kita, and F. Okuyama, Super-miniature x-ray tube, Appl. Phys. Lett., 85, 5679 (2004).
    [157] X. M. H Huang, C. A. Zorman, M. Mehregany, and M. L. Roukes, Nanodevice motion at microwave frequencies, Nature, 421, 496 (2003).
    [158] Y. Y. Bu and Z. Y. Chen, Effect of hydrogen treatment on the photoelectrochemical properties of quantum dots sensitized ZnO nanorod array, J. Power Sources, 272, 647 (2014).
    [159] C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature, Appl. Phys. Lett., 81, 3648 (2002).
    [160] J. Na, B. Gong, G. Scarel, and G.N. Parsons, Role of Gas Doping Sequence in Surface Reactions and Dopant Incorporation during Atomic Layer Deposition of Al-Doped ZnO, Chem Mater., 21, 3191 (2009).
    [161] R. Zamiri, A. Kaushal, A. Rebelo, and J. M. F. Ferreira, Er doped ZnO nanoplates: Synthesis, optical and dielectric properties, Ceramics Int., 40, 1635 (2014).
    [162] K. K. Naik, R. Khare, D. Chakravarty, M. A. More, R. Thapa, D. J. Late, and C. S. Rout, Field emission properties of ZnO nanosheet arrays, Appl. Phys. Lett., 105, 233101 (2014).
    [163] S. J. Young, Y. H. Liu, and L. T. Lai, Fabrication and Characterization of Aluminum-Doped ZnO Nanosheets for Field Emitter Application, ECS J. Solid State Sci. Technol., 6, P243 (2017).
    [164] Y. H. Liu, S. J. Chang, and S. J. Young, Enhanced Field Emitter Base on Indium-Doped ZnO Nanostructures by Aqueous Solution, ECS J. Solid State Sci. Technol., 5, R203 (2016).
    [165] S. J. Young and Y. H. Liu, Field emission properties of Al-doped ZnO nanosheet based on field emitter device with UV exposure, RSC Adv., 7, 14219 (2017).
    [166] S. J. Young, C. C. Yang, and L. T. Lai, Review—Growth of Al-, Ga-, and In-Doped ZnO Nanostructures via a Low-Temperature Process and Their Application to Field Emission Devices and Ultraviolet Photosensors, J. Electrochem. Soc., 164, B3013 (2016).
    [167] T. P. Chen, S. J. Young, S. J. Chang, C. H. Hsiao, and C. S. Huang, Field-Emission and Photoelectrical Characteristics of ZnO Nanorods Photodetectors Prepared on Flexible Substrate, J. Electrochem. Soc., 159, J153 (2012).
    [168] J. R. Huang, Y. J. Wu, C. P. Gu, M. H. Zhai, L. Yu, M. Yang, and J. H. Liu, Large-scale synthesis of flowerlike ZnO nanostructure by a simple chemical solution route and its gas-sensing property, Sens. Actuators B, Chem., 146, 206 (2010).
    [169] H. K. Sun, M. Luo, W. J. Weng, K. Cheng, P. Y. Du, G. Shen, and G. R. Han, Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route, Nanotechnology, 19, 125603 (2008).
    [170] S. J. Young, and Y. H. Liu, Enhanced Field Emission Properties of Two-Dimensional ZnO NanosheetsUnder UV illumination, IEEE J. Sel. Top. Quantum Electron., 64, 9100304−1 (2014).
    [171] A. Escobedo-Morales and U. Pal, Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping, Appl. Phys. Lett., 93, 193120-1 (2008).
    [172] X. T. Zhou, T. H. Lin, Y. H. Liu, C. X. Wu, X. Y. Zeng, D. Jiang, Y. A. Zhang, and T. L. Guo, Structural, optical, and improved fieldemission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation, ACS Appl. Mater. Interf., 5, 10067 (2013).
    [173] Z. D. Lin, S. J. Young, C. H. Hsiao, S. J. Chang, and C. S. Huang, Improved Field Emission Properties of Ag-Decorated Multi-Walled Carbon Nanotubes, IEEE Photonics Technol. Lett., 25, 1017 (2013).
    [174] S. Y. Lin, S. J. Chang, and T. J. Hsueh, ZnO Nanowires Modified with Au Nanoparticles Exhibiting High Field-Emission Performance, ECS J. Solid State Sci. Technol., 2, N149 (2013).
    [175] Y. M. Chang, M. L. Lin, T. Y. Lai, H. Y. Lee, C. M Lin, Y. C. S. Wu, and J. Y. Juang, Field Emission Properties of Gold Nanoparticle-Decorated ZnO Nanopillars, ACS Appl. Mater. Interfaces, 4, 6675 (2012).
    [176] J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, "Zinc oxide nanocomb biosensor for glucose detection," Applied Physics Letters, vol. 88, no. 23, 2006.
    [177] E. Gizeli, "Design considerations for the acoustic waveguide biosensor," Smart Materials and Structures, vol. 6, no. 6, pp. 700-706, 1997.
    [178] A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, "Prospects of nanotechnology in clinical immunodiagnostics," Sensors (Basel), vol. 10, no. 7, pp. 6535-81, 2010.
    [179] S. Y. Lin, S. J. Chang, and T. J. Hsueh, "ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose," Applied Physics Letters, vol. 104, no. 19, May 12 2014.
    [180] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park, "Comparative structure and optical properties of Ga-, In-, and Sn-doped ZnO nanowires synthesized via thermal evaporation," J Phys Chem B, vol. 109, no. 7, pp. 2526-31, Feb 24 2005.
    [181] J. Wang, "Electrochemical glucose biosensors," Chem Rev, vol. 108, no. 2, pp. 814-25, Feb 2008.
    [182] A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, "Hyperglycemic crises in adult patients with diabetes," Diabetes Care, vol. 32, no. 7, pp. 1335-43, Jul 2009.
    [183] H. Tian, M. Jia, M. Zhang, and J. Hu, "Nonenzymatic glucose sensor based on nickel ion implanted-modified indium tin oxide electrode," Electrochimica Acta, vol. 96, pp. 285-290, 2013.
    [184] P. Lu, Q. Liu, Y.Xiong, Q. Wang, Y. Lei, S. Lu, L. Lu, Li Yao, "Nanosheets-assembled hierarchical microstructured Ni(OH)2 hollow spheres for highly sensitive enzyme-free glucose sensors," Electrochimica Acta, vol. 168, pp. 148-156, 2015.
    [185] B. Zhang, Y. He, B. Liu, and D. Tang, "Nickel-functionalized reduced graphene oxide with polyaniline for non-enzymatic glucose sensing," Microchimica Acta, vol. 182, no. 3-4, pp. 625-631, 2014.
    [186] D. Grieshaber, R. MacKenzie, J. Voros, and E. Reimhult, "Electrochemical Biosensors - Sensor Principles and Architectures," Sensors (Basel), vol. 8, no. 3, pp. 1400-1458, Mar 7 2008.
    [187] F. Cao, S. Guo, H. Ma, G. Yang, S. Yang, and J. Gong, "Highly sensitive nonenzymatic glucose sensor based on electrospun copper oxide-doped nickel oxide composite microfibers," Talanta, vol. 86, pp. 214-20, Oct 30 2011.
    [188] P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," IEEE Transactions on Biomedical Engineering, vol. BME-17, no. 1, pp. 70-71, 1970.
    [189] L. C. Clark, Jr. and C. Lyons, "Electrode systems for continuous monitoring in cardiovascular surgery," Ann N Y Acad Sci, vol. 102, pp. 29-45, Oct 31 1962.
    [190] S. Park, H. Boo, and T. D. Chung, "Electrochemical non-enzymatic glucose sensors," Anal Chim Acta, vol. 556, no. 1, pp. 46-57, Jan 18 2006.
    [191] Z. Zhu, L. Garcia-Gancedo, A. J. Flewitt, H. Xie, F. Moussy, and W. I. Milne, "A critical review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and graphene," Sensors (Basel), vol. 12, no. 5, pp. 5996-6022, 2012.
    [192] D. Pletcher, "Electrocatalysis - Present and Future," Journal of Applied Electrochemistry, vol. 14, no. 4, pp. 403-415, 1984.
    [193] L. D. Burke, "Premonolayer Oxidation and Its Role in Electrocatalysis," Electrochimica Acta, vol. 39, no. 11-12, pp. 1841-1848, Aug 1994.
    [194] H. Zhu, L. Li, W. Zhou, Z. Shao, and X. Chen, "Advances in non-enzymatic glucose sensors based on metal oxides," Journal of Materials Chemistry B, vol. 4, no. 46, pp. 7333-7349, 2016.
    [195] Steckhan E., "Organic synthese with with electrochemically regenerable redox systems, " Topic in Current Chemistry, Vol.142, Steckhan E. eds, Springer-Verlag,Berlin Heidelberg, 1987.
    [196] M. E. Tess and J. A. Cox, "Chemical and biochemical sensors based on advances in materials chemistry," Journal of Pharmaceutical and Biomedical Analysis, vol. 19, no. 1-2, pp. 55-68, 1999.
    [197] I. I. Suni, "Impedance methods for electrochemical sensors using nanomaterials," TrAC Trends in Analytical Chemistry, vol. 27, no. 7, pp. 604-611, 2008.
    [198] F. Lisdat and D. Schafer, "The use of electrochemical impedance spectroscopy for biosensing," Anal Bioanal Chem, vol. 391, no. 5, pp. 1555-67, Jul 2008.
    [199] D. Pradhan, F. Niroui, and K. T. Leung, "High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate," ACS Appl Mater Interfaces, vol. 2, no. 8, pp. 2409-12, Aug 2010.
    [200] C.L. Lai, X.X. Wang, Y. Zhao, H. Fong, Z.T. Zhu, “Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers, ” RSC Adv., vol. 3, pp. 6640-6645, 2013.
    [201] T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, and Y. Chen, "Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering," Thin Solid Films, vol. 326, no. 1-2, pp. 60-62, 1998.
    [202] D.-J. Kwak, M.-W. Park, and Y.-M. Sung, "Discharge power dependence of structural and electrical properties of Al-doped ZnO conducting film by magnetron sputtering," Vacuum, vol. 83, no. 1, pp. 113-118, 2008.
    [203] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, L. S. Wen,"X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films," Applied Surface Science, vol. 158, no. 1-2, pp. 134-140, 2000.
    [204] C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev,M. Lorenz, M. Grundmann, "Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li," Applied Physics Letters, vol. 83, no. 10, pp. 1974-1976, 2003.
    [205] C. K. Chiang, C. R. Fincher,Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, Alan G. MacDiarmid, "Electrical Conductivity in Doped Polyacetylene," Physical Review Letters, vol. 39, no. 17, pp. 1098-1101, 1977.
    [206] T.6 Aoki, Y. Hatanaka, and D. C. Look, "ZnO diode fabricated by excimer-laser doping, Applied Physics Letters, vol. 76, no. 22, pp. 3257-3258, May 29 2000.
    [207] D. Chattopadhyay and H. J. Queisser, "Electron scattering by ionized impurities in semiconductors," Reviews of Modern Physics, vol. 53, no. 4, pp. 745-768, 1981.
    [208] G.-C. Yi, Vapor–Liquid–Solid Growth of Semiconductor Nanowires. 2012.
    [209] R. S. Wagner and W. C. Ellis, "Vapor‐Liquid‐Solid Mechanism of Single Crystal Growth," Applied Physics Letters, vol. 4, no. 5, pp. 89-90, 1964.
    [210] Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, "Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor–Solid Process," Advanced Functional Materials, vol. 16, no. 17, pp. 2243-2251, 2006.
    [211] A. Umar, S. H. Kim, Y. S. Lee, K. S. Nahm, and Y. B. Hahn, "Catalyst-free large-quantity synthesis of ZnO nanorods by a vapor–solid growth mechanism: Structural and optical properties," Journal of Crystal Growth, vol. 282, no. 1-2, pp. 131-136, 2005.
    [212] F. D. Wang, A. G. Dong, J. W. Sun, R. Tang, H. Yu, and W. E. Buhro, "Solution-liquid-solid growth of semiconductor nanowires,"Inorganic Chemistry, vol. 45, no. 19, pp. 7511-7521, Sep 18 2006.
    [213] J. Y. Li and H.Li, “Physical and Electrical Performance of Vapor–Solid Grown ZnO Straight Nanowires,” Nanoscale Res Lett, vol. 4, pp. 165–168, 2009.
    [214] W. I. Park, D. H. Kim, S.-W. Jung, and G.-C. Yi, "Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods," Applied Physics Letters, vol. 80, no. 22, pp. 4232-4234, 2002.
    [215] C. Pacholski, A. Kornowski, and H. Weller, "Self‐Assembly of ZnO: From Nanodots to Nanorods," Angewandte Chemie International Edition, vol. 41, no. 7, pp. 1188-1191, 2002.
    [216] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, Y. Yang, S. T. Tan, W. Huang, "Growth mechanism of tubular ZnO formed in aqueous solution," Nanotechnology, vol. 17, no. 6, pp. 1740-4, Mar 28 2006.
    [217] Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: Growth mechanism and structural and optical properties,” Nanatechnology, vol. 18,no. 11, pp. 115603-1–115603-7, Mar. 2007.
    [218] Z.-H. Wang, H.-C. Yu, C.-C. Yang, H.-T. Yeh, and Y.-K. Su, “Lowfrequency noise performance of al-doped ZnO nanorod photosensors by a low-temperature hydrothermal method,” IEEE Trans. Electron Devices,vol. 64, no. 8, pp. 3206–3212, Aug. 2017.
    [219] M. Oikawa and K. Toda, "Preparation of Pb(Zr,Ti)O3thin films by an electron beam evaporation technique," Applied Physics Letters, vol. 29, no. 8, pp. 491-492, 1976.
    [220] K.H. Kim, K.C. Park, D.Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering,” J. Appl. Phys., vol. 81, pp. 7764-7772, 1997.
    [221] C.-L. Hsu, C.-W. Su, and T.-J. Hsueh, "Enhanced field emission of Al-doped ZnO nanowires grown on a flexible polyimide substrate with UV exposure," RSC Adv., vol. 4, no. 6, pp. 2980-2983, 2014.
    [222] H. H. Mai, V. T. Pham, V. T. Nguyen, C. D. Sai, C. H. Hoang, and T. B. Nguyen, "Non-enzymatic Fluorescent Biosensor for Glucose Sensing Based on ZnO Nanorods,", Journal of Electronic Materials, vol. 46, no. 6, pp. 3714-3719, Jun 2017.
    [223] S. N. Sarangi, S. Nozaki, and S. N. Sahu, "ZnO Nanorod-Based Non-Enzymatic Optical Glucose Biosensor," J Biomed Nanotechnol, vol. 11, no. 6, pp. 988-96, Jun 2015.

    無法下載圖示 校內:2024-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE