簡易檢索 / 詳目顯示

研究生: 陳冠宇
Chen, Kuan-Yu
論文名稱: 反算問題於聲子輻射熱傳之研究
The Inverse Phonon Radiative Transfer Problems
指導教授: 黃正弘
Huang, Cheng-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 96
中文關鍵詞: 共軛梯度法聲子輻射熱傳微觀熱傳
外文關鍵詞: Phonon, CGM, EPRT
相關次數: 點閱:98下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在於針對反算問題於聲子輻射熱傳上之研究。聲子幅射熱傳方程式(Equation of Phonon Radiative Transfer)主要由波茲曼傳輸理論(Boltzmann Transport Theory)簡化推導而來,具有描述巨觀與微觀熱傳現象之能力,反算方法為共軛梯度法(Conjugate Gradient Method),本文研究主題將於下列三章中分別介紹。
    在第二章中預測薄膜邊界溫度函數,主要的物理模型為鑽石(Diamond)薄膜,在進行反算預測之前,吾人先將數值模擬正解與既有的正解文獻做比較,可確信正算問題無誤。利用反算方法中的共軛梯度法(CGM)來進行反算分析,試著以不同的方法化解聲子幅射熱傳方程式(EPRT)中難以處理的積分項,並與既有文獻的方法做比較。經比較兩方法後可知,無論在無誤差或存在量測誤差情況下兩者皆可得到相同程度準確的預測結果,因此吾人在第二章中提出另ㄧ種利用共軛梯度法處理EPRT的推導方式,可做為日後研究驗證之用。
    在第三章中,亦利用共軛梯度法(CGM)進行未知邊界溫度反算分析工作。物理模型主要是探討砷化鎵/砷化鋁超晶格薄膜( GaAs/AlAs Superlattices)邊界溫度函數預測,在雙層薄膜界面中採用散異理論模式(Diffusive mismatch model)來描述微觀尺度下界面熱阻之效應,及比對尺度變化對於界面熱阻的影響。利用數值實驗模擬正確之邊界溫度,同時在考慮量測標準差的情況下,得知使用共軛梯度法預測仍可得到準確的邊界溫度函數結果。
    在第四章中主要利用共軛梯度法(CGM)來預測微觀尺度下熱波傳遞為溫度與頻率函數之鬆弛時間,吾人利用文獻中經驗公式所推知的鬆弛時間作為數值實驗模擬之正解,藉由聲子感測器量測邊界聲子強度變化來預測材質內不同頻率與溫度下之鬆弛時間。本章主要選用兩種不同文獻中鬆弛時間推導方式,其分別為鑽石(Diamond)薄膜與砷化鎵(GaAs),並在使用任意初始猜值下進行反算預測。當無量測誤差時吾人可成功的預測相當準確之鬆弛時間函數,然而在考慮加入量測誤差後發現反算預測對於誤差容忍能力較小,當存在大量量測誤差時會產生鬆弛時間函數預測效果較差之情況。
    本論文研之究重點在於將共軛梯度法(CGM)用於預測微觀熱傳上各種現象,並且利用近年來才開始被研究的聲子強度量測技術,使預測微觀尺度下熱通量與材質鬆弛時間變為可能。

    The inverse nanoscale heat conduction problems, using Conjugate Gradient Method (CGM), are discussed in this thesis. The nanoscale conduction phenomenon is modeled by Equation of Phonon Radiative Transport (EPRT), and the objectives are to estimate the unknown boundary temperature distributions and the material relaxation time based on phonon intensity measurements. The research topics of this thesis are divided into three portions and are prepared in chapters two, three and four, respectively.
    In chapter two an inverse phonon radiative transport problem with an alternative form of adjoint equation is solved by using CGM to estimate the unknown boundary temperature distributions, based on the phonon intensity measurements. Finally it is shown that accurate boundary temperatures can always be obtained with CGM.
    In chapter three CGM is also utilized in the inverse phonon radiative transport problem for a double-layer thin-film structure in estimating the unknown boundary temperature distributions, based on the phonon intensity measurements. Again it is shown that accurate boundary temperatures can always be obtained with CGM for this double-layer thin-film structure.
    Finally in chapter four an inverse nanoscale phonon radiative transfer problem is solved by using CGM again to estimate the unknown frequency and temperature dependent relaxation time, based on the simulated phonon intensity measurements. Results obtained in this inverse analysis will be justified based on the numerical experiments where two different unknown distributions of relaxation time are to be estimated. Finally it is shown that the reliable relaxation time can be obtained with CGM.

    目 錄 摘 要 I 誌 謝 IV 目 錄 V 圖表目錄 VIII 符號說明 X 第一章 緒論 1 第二章 反算法於聲子輻射熱傳邊界溫度之預測 4 2-1文獻回顧 4 2-2 直接解問題(DIRECT PROBLEM) 6 2-3 反算問題(THE INVERSE PROBLEM) 7 2-4 共軛梯度法之極小化過程(CONJUGATE GRADIENT METHOD FOR MINIMIZATION) 8 2-5 靈敏性問題與前進步距(SENSITIVITY PROBLEM AND SEARCH STEP SIZE) 9 2-6 伴隨問題與梯度方程式(ADJOINT PROBLEM AND GRADIENT EQUATION) 11 2-7 收斂條件(STOPPING CRITERION) 14 2-8 數值計算流程(COMPUTATIONAL PROCEDURE) 15 2-9 結果與討論(RESULT AND DISCUSSIONS) 16 2-10 結論(CONCLUSION) 21 2-11 參考文獻(REFERENCE) 22 第三章 反算法於雙層奈米薄膜邊界溫度之預測 33 3-1 文獻回顧 33 3-2 直接解問題(DIRECT PROBLEM) 34 3-3 反算問題(THE INVERSE PROBLEM) 37 3-4 共軛梯度法之極小化過程 (CONJUGATE GRADIENT METHOD FOR MINIMIZATION) 38 3-5 靈敏性問題與前進步距(SENSITIVITY PROBLEM AND SEARCH STEP SIZE) 39 3-6 伴隨問題與梯度方程式(ADJOINT PROBLEM AND GRADIENT EQUATION) 41 3-7 收斂條件(STOPPING CRITERION) 45 3-8 數值計算流程(COMPUTATIONAL PROCEDURE) 45 3-9 結果與討論(RESULT AND DISCUSSIONS) 46 3-10 結論(CONCLUSION) 51 3-11 參考文獻(REFERENCE) 52 第四章 反算法於微觀熱傳下材料鬆弛時間之預測 66 4-1 文獻回顧 66 4-2 直接解問題(DIRECT PROBLEM) 67 4-3 反算問題(THE INVERSE PROBLEM) 68 4-4 共軛梯度法之極小化過程 (CONJUGATE GRADIENT METHOD FOR MINIMIZATION) 70 4-5 靈敏性問題與前進步距(SENSITIVITY PROBLEM AND SEARCH STEP SIZE) 71 4-6 伴隨問題與梯度方程式(ADJOINT PROBLEM AND GRADIENT EQUATION) 72 4-7 收斂條件(STOPPING CRITERION) 75 4-8 數值計算流程(COMPUTATIONAL PROCEDURE) 76 4-9 結果與討論(RESULT AND DISCUSSIONS) 77 4-10 結論(CONCLUSION) 81 4-11 參考文獻(REFERENCE) 82 第五章 結語 95

    第二章
    1.M.I.Flik and C.L.Tien.“Thermal phenomena in high-Tc thgin film superconductor”,Annual Review of Heat Transfer,4,115-144,(1992).
    2.Majumdar, “Microscale Heat Conduction in Dielectric Thin Films”, Journal of Heat Transfer, 115, 7-16 (1993).
    3.A.Joshi and A.Majumdar, “Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films”, Journal of Applied Physics, 74, 31-39 (1993).
    4.C. Hwang , S. Lin , H. S. Chu , and W. S. Lee , “ Nonlinear diffusion-induced stresses in a long bar of square cross section.” , Int. J. Solid. Struct. 36 , 269-284 , (1999).
    5.H. Huang and C. W. Chen, “A Boundary Element Based Inverse-Problem in Estimating Transient Boundary Conditions with Conjugate Gradient Method”, Int. J. Numerical Methods in Engineering, 42, 943-965 (1998).
    6.H. Huang and W. C. Chen, “A Three-Dimensional Inverse Forced Convection Problem in Estimating Surface Heat Flux by Conjugate Gradient Method”, Int. J. Heat and Mass Transfer, 43, 3171-3181 (2000).
    7.C. H. Huang, “A Nonlinear Inverse Vibration Problem of Estimating the External Forces for A System with Displacement-Dependent Parameters”, J. Sound and Vibration, 248, 789-807 (2001).
    8.S. K. Kim and I. M. Daniel, “Solution to inverse inverse heat conduction problem in nanoscale using Sequential method”, Numerical Heat Transfer, Part B, 44, 439–456, (2003).
    9.S. K. Kim and I. M. Daniel, “Gradient method for inverse heat conduction problem in nanoscale”, Int. J. Numer. Meth. Engng , 60, 2165–2181 (2004).
    10.Y. Ishii, A. Mori, A. Onodera, S. Kawano and Y. Mori, “ Phonon Measurement of RbCl at 4.9 kbar”, Physica B, 241-243, 409-411 (1998).
    11.M. Ikezawa, T. Okuno, and Y. Masumoto, “Complementary Detection of Confined Acoustic Phonons in Quantum Dots by Coherent Phonon Measurement and Raman Scattering”, Physical Review B, 64, 201315(R) (2001).
    12.Alifanov, “Inverse Heat Transfer Problem”,Springer Verlag,Berlin,(1994).
    13.IMSL Library Edition 10.0. User's Manual: Math Library Version 1.0, IMSL, Houston, TX, (1987).
    14.M. Alifanov, “ Solution of an Inverse Problem of Heat Conduction by Iteration Methods ”, J. of Engineering Physics, 26, 471-476,(1974).
    15.O.M. Alifanov and E. A. Artyukhin, “Regularized numerical solution of nonlinear of inverse heat conduction problem”, J. Engng Phys, 35,no.6,1501-1506,(1978).
    16.O.M. Alifanov, ”Application of the regularization principle to the formulation of approximate solution of inverse heat conduction problem”, J. Engng Phys., 23,no.6, 1566-1571,(1972).
    17.H. W. Engl, ”Discrepancy principle for Tikhonov regularization of ill-posed problems leading to optimal convergence rate”, J. Optim Theory Applic., 52,no2,(1987).
    第三章
    1.Little W A. “The Transport of Heat Between Dissimlar Solids at Low Temperature,” Can, J. Phys.,37,334-349,(1959).
    2.Swartz E T. and Pohl R.O., “ Thermal Boundary Resistance”,Review of Modern Physics, 61, 605-668,(1989).
    3.Phelan P.E., “Application of Diffuse Mismatch Theory to the Prediction of Thermal Boundary Resostance in Thon-Film High-Tc Superconductors”ASME J.Heat Transfer,120, 37-43,(1998).
    4.WeisbuchandB. Vinter, “Quantum SemiconductorStructures”, AcademicPress, Boston, (1991).
    5.Colvard, T. Gant, A. Klein, M. V. Merlin, R. Fisher, R. Morkoc, and A. C. Gossard, “Folded Acoustic and Quantized Optic Phonons in (GaAl)As Superlattices”, Physical Review B, 31, 2083~ 2091, (1985).
    6.Majumdar, “Microscale Heat Conduction in Dielectric Thin Films”, Journal of Heat Transfer, 115, 7-16 (1993).
    7.G. Chen, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures”, Journal of Heat Transfer, 119, 220-229, (1997).
    8.G. Chen, “Thermal Conductivity and Ballistic-Phonon Transport in the Crossplane Direction of Super-lattices”, Phys. Rev. B,57, 14958–14973, (1998).
    9.Y. Ishii, A. Mori, A. Onodera, S. Kawano and Y. Mori, “ Phonon Measurement of RbCl at 4.9 kbar”, Physica B, 241-243, 409-411 (1998).
    10.M. Ikezawa, T. Okuno, and Y. Masumoto, “Complementary Detection of Confined Acoustic Phonons in Quantum Dots by Coherent Phonon Measurement and Raman Scattering”, Physical Review B, 64, 201315(R) (2001).
    11.M. Alifanov, “ Solution of an Inverse Problem of HeatConduction by Iteration Methods ”, J. of Engineering Physics, 26,471-476. (1974).
    12.S. K. Kim and I. M. Daniel, “Gradient method for inverse heat conduction problem in nanoscale”, Int. J. Numer. Meth. Engng , 60, 2165–2181 (2004).
    13.IMSL Library Edition 10.0. User's Manual: Math Library Version 1.0, IMSL, Houston, TX, (1987)
    14.Alifanov, “Inverse Heat Transfer Problem”,Springer-Verlag, Berlin,(1994).
    15.Afraisiab R. and Ali A. R. “Unsteady heat transport in direction perpendicular to a double-layer thin-film structure”,Numerical heat transfer,A,41,373-390,(2002).
    16.O.M. Alifanov and E. A. Artyukhin, “Regularized numerical solution of nonlinear of inverse heat conduction problem”, J. Engng Phys., 35,no.6, 1501-1506,(1978).
    17.O.M. Alifanov, ”Application of the regularization principle to the formulation of approximate solution of inverse heat conduction problem”, J. Engng Phys., 23,no.6, 1566-1571,(1972).
    18.H. W. Engl, ”Discrepancy principle for Tikhonov regularization of ill-posed problems leading to optimal convergence rate”, J. Optim Theory Applic., 52,no2,(1987).
    第四章
    1.J Che, T Çagın, W Deng, WA Goddard III “Thermal conductivity of diamond and related materials from molecular dynamics simulations”, Journal of Chemical Physics,113, no.16, 6888-6900, (2000).
    2.Goodson, K.E., Kading, O.W., Rosler, M. and Zachai, R., “Experimental investigation of thermal conductivity normal to diamond-silicon boundaries”, J. Appl. Phys., 77, no. 4, 1385-1392, (1995).
    3.Callaway, J., “Model of lattice thermal conductivity at low temperatures”, Physical Review, 113, no. 4, 1046-1051, (1959).
    4.Holland, M.G., “Analysis of lattice thermal conductivity”, Physical Review, 132, no. 6, 2461-2471. (1963).
    5.Majumdar, “Microscale Heat Conduction in Dielectric Thin Films”, Journal of Heat Transfer, 115, 7-16 (1993).
    6.Joshi and A. Majumdar, “Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films”, Journal of Applied Physics, 74, 31-39 (1993).
    7.G. Chen, “Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures”, Journal of Heat Transfer, 119, 220-229, (1997).
    8.G. Chen, “Thermal Conductivity and Ballistic-Phonon Transport in the Crossplane Direction of Super-lattices”, Phys. Rev. B, 57, 14958-14973, (1998).
    9.Y. Ishii, A. Mori, A. Onodera, S. Kawano and Y. Mori, “ Phonon Measurement of RbCl at 4.9 kbar”, Physica B, 241-243, 409-411 (1998).
    10.M. Ikezawa, T. Okuno, and Y. Masumoto, “Complementary Detection of Confined Acoustic Phonons in Quantum Dots by Coherent Phonon Measurement and Raman Scattering”, Physical Review B, 64, 201315(R) (2001).
    11.IMSL Library Edition 10.0. User's Manual: Math Library Version 1.0,IMSL, Houston, TX, (1987).
    12.S. K. Kim and I. M. Daniel, “Gradient method for inverse heat conduction problem in nanoscale”, Int. J. Numer. Meth. Engng , 60, 2165-2181 (2004).
    13.M. Alifanov, “ Solution of an Inverse Problem of HeatConduction by Iteration Methods ”, J. of Engineering Physics, 26,471-476,(1974).
    14.O.M. Alifanov and E. A. Artyukhin, “Regularized numerical solution of nonlinear of inverse heat conduction problem”, J. Engng Phys., 35,no.6,1501-1506,(1978).
    15.O.M. Alifanov, ”Application of the regularization principle to the formulation of approximate solution of inverse heat conduction problem”, J. Engng Phys., 23,no.6, 1566-1571,(1972).
    16.H. W. Engl, ”Discrepancy principle for Tikhonov regularization of ill-posed problems leading to optimal convergence rate”, J. Optim Theory Applic., 52,no2,(1987).

    下載圖示 校內:2007-07-31公開
    校外:2007-07-31公開
    QR CODE