簡易檢索 / 詳目顯示

研究生: 嚴志弘
Im, Chi-Wang
論文名稱: 具時間延遲之雙向觸覺控制於人機互動應用
Bilateral Time-delayed Haptic Control Applied on Human-machine Interaction
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 雙向控制遠端操作時間延遲外擾觀測架構
外文關鍵詞: bilateral control, remote operation, time delay, disturbance observer
相關次數: 點閱:106下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人機互動應用系統與遠端操作功能的發展需求快速增加,除了需具備人、機間的運動狀態同步,系統更需提供操作者擬真的觸覺回饋,達到身歷其境的操作體驗。具備遠端操作機制的人機互動雙向控制系統中,透過主、從雙端回授位移、扭矩物理量,即可達成人機雙端運動的同步。然而,實務系統存在雙端資料傳輸上的延遲,導致系統輸出響應或觸覺回饋時,造成嚴重的穩定性振動問題,進而發生失真的操作體驗,甚至有安全疑慮。本研究著重於探討雙向控制之時間延遲補償,將訊號傳輸延遲視為外擾,於主從雙端次系統中建立外擾觀測架構(Disturbance Observer),用於估測操作者施加之扭矩及時間延遲的等效外擾量,進而可採用前饋補償即時抑制,確保同步運動及擬真的力感操作。本研究所建立的雙向控制及時間延遲補償方法,是透過無機械耦合連接的雙馬達實驗平台,驗證此時間延遲補償的可行性,並進一步應用於機械手臂,展現其實務應用的發展潛力。

    The human-machine interactive application systems are developed rapidly, most of these systems further develop in remote control. In the remote control system, it is known that haptic feedback can massively improve the experience of the human-machine interaction. This paper investigates a remote bilateral control system that can reproduce the haptic feedback between the master and the slave. When the master and the slave are applied away from each other, the communication delay time exists on the data transmission and it will cause the unavoidable stability problem. This thesis focuses on the time delay compensation of the remote bilateral control system. The communication time delay can be assumed as the equivalent time delay disturbance so that it can be easy to estimate the external disturbance by the disturbance observer. This study employs a dual observer design to estimate operation torque and the equivalent disturbance such that the effect of the time delay can be compensated by the disturbance feedforward. Through the dual observer compensation method, the effect of the time delay can be suppressed and ensured the synchronize motion between the master and the slave. The feasibility and effectiveness of the proposed method are verified by the experimental results.

    目錄 摘要 I 致謝 XIX 目錄 XX 表目錄 XXIII 圖目錄 XXIII 符號表 XXVI 第一章 緒論 1 1.1 研究動機 1 1.2 研究背景與文獻回顧 2 1.2.1 觸覺回饋雙向控制系統概念 2 1.2.2 遠端控制系統 4 1.3 研究目的 8 1.4 本文架構 9 第二章 雙向控制理論與架構 10 2.1 扭矩觀測架構 10 2.2 雙向控制系統 11 2.3 控制器設計 13 第三章 遠端控制系統理論與架構 17 3.1 馬達遠端控制架構與分析 17 3.2 遠端雙向控制架構與分析 20 3.3 時間延遲穩定邊界 22 第四章 時間延遲影響估測補償架構 24 4.1 時間延遲外擾架構 24 4.2 雙觀測器補償架構 25 4.2.1 主端運算概念補償架構 26 4.2.2 邊緣運算概念補償架構 31 4.3 觀測器設計 33 4.3.1 操作扭矩觀測器 33 4.3.2 時間外擾觀測器 34 第五章 實驗結果與討論 37 5.1 實驗架構 37 5.1.1 動力驅動模組 38 5.1.2 控制及訊號擷取系統 39 5.1.3 扭矩感測器 40 5.1.4 人機互動裝置 41 5.2 實驗結果 42 5.2.1 實驗一:估測器模型準確度驗證 43 5.2.2 實驗二:雙向控制架構驗證 44 5.2.3 實驗三:參考模型調控操作觸感驗證 44 5.2.4 實驗四:遠端雙向控制驗證 45 5.2.5 實驗五:雙估測器補償架構驗證 47 5.2.6 實驗六:雙向控制系統整合機械手臂 48 第六章 結論與未來工作 50 6.1 結論 50 6.2 未來建議 51 參考文獻 52

    [1] L. T. Hu, "An upper limb motion assist device for hemiplegic patients," IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 199-203, 2018.
    [2] https://www.hhsh.chc.edu.tw
    [3] H. Chen and J. Lee, “Control of two-wheeled mobile manipulator with vision servoing,” International Conference on Image and Graphics, pp. 753-756, 2013.
    [4] A. Maruthupandi, N. Muthupalaniappan and S. R. Pandian, “Visual servoing of a 2-link underwater robot manipulator, ” IEEE Underwater Technology (UT), pp. 1-2, 2015.
    [5] M. Aoki, T. Shimon, T. Matsunaga, T. Mizoguchi, S. Shibao, H. Sasaki, and K. Ohnishi, “Identification method of environmental stiffness using haptic forceps for brain surgery,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 207-212, 2018.
    [6] Bark, Karlin, McMahan, W., Remington, A., Gewirtz, J. Wedmid, A., Lee, D.I., Kuchenbecker and K.J, “In vivo validation of a system for haptic feedback of tool vibrations in robotic surgery,” Surgical Endoscopy, vol. 27, no. 2, pp. 656-664, 2013.
    [7] C. Mitsantisuk and K. Ohishi, “Robotics-assisted rehabilitation therapy for the hands and wrists using force sensorless bilateral control with shadow and mirror mode,” IEEE International Conference on Mechatronics(ICM), pp. 541-546, 2015.
    [8] S. Katsura, Y. Matsumoto, and K. Ohnishi, “Realization of "Law of action and reaction" by multilateral control,” IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1196-1205, 2005.
    [9] S. Katsura and K. Ohnishi, “A realization of haptic training system by multilateral control,” IEEE Transactions on Industrial Electronics, vol. 53, no. 6, pp. 1935-1942, 2006.
    [10] 李松育,「觸覺回饋雙向控制於虛擬實現之實現」,碩士論文,國立成功大學機械工程研究所,2019。
    [11] F. Mitome and K. Ohnishi, “Bilateral control with bluetooth and its evaluation, ” International Conference on Human System Interactions,, pp. 346-351, 2011.
    [12] M. Honda, T. Miyoshi, T. Imamura, M. Okabe, F. M. Yazadi and K. Terashima, “Tele-operation between usa and japan using humanoid robot hand/arm,” ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 151-152, 2011.
    [13] X. Wang and J. Li, “A tele-rehabilitation system with bilateral haptic feedback to both the therapist and the patient via time-delay environment, ” World Haptics Conference (WHC), pp. 331-334, 2013.
    [14] O. J. Smith, “A controller to overcome dead time, ” ISA Journal, vol. 6, pp. 28–33, 1959.
    [15] Saito, Eiichi and Katsura, “ Time delay compensation using equivalent elastic force feedback, ” IEEJ Journal of Industry Applications, vol. 4, no. 6, pp. 688-695, 2015.
    [16] K. Natori and K. Ohnishi, “A design method of communication disturbance observer for time-delay compensation, taking the dynamic property of network disturbance into account,” IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 2152-2168, 2008.
    [17] S. Katsura, K. Irie, and K. Ohishi, “Wideband force control by position-acceleration integrated disturbance observer,” IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1699-1706, 2008.
    [18] 許家桾、陳俊霖,「應用加速規於馬達控制系統之扭矩外擾估測」,馬達電子報第762期,馬達科技研究中心,2017.
    [19] 薛博文,「狀態及外擾估測於動力輔助控制系統之設計與應用」,博士論文,國立成功大學機械工程研究所,2013。
    [20] G. Ellis, Observers in control systems: a practical guide: Elsevier, 2002
    [21] N. Hogan, “Impedance control: an approach to manipulation: part I—Theory, part II—implementation, part III—application,” Journal of Dynamic Systems, Measurement, and Control, vol. 107, no. 1, pp. 1-23, 1985.
    [22] B. Fischer, and E. Ramsperger, “Human express saccades: extremely short reaction times of goal directed eye movements,” Experimental Brain Research, vol. 57, no. 1, pp. 191-195, 1984.
    [23] C. W. Im, C. L. Chen and M. C. Tsai, “Motion control design for
    reducing effect of communication delay-time,” The 16th International
    Conference on Automation Technologhy, 2019.
    [24] https://www.uis.com.tw/edm/uisnews/uisnews042/learning.aspx
    [25] https://zh.wikipedia.org/wiki/%E9%9B%B2%E7%AB%AF%E9%81%
    8B%E7%AE%97
    [26] M. Ho and Y. Lai, “Controller design of servo drives for bandwidth
    improvement, ” IEEE 3rd International Future Energy Electronics
    Conference and ECCE Asia, pp. 52-56, 2017.
    [27] H. Mueller, S. V. Gogouvitis, H. Haitof, A. Seitz and B. Bruegge, "Poster abstract: continuous computing from cloud to edge," 2016 IEEE/ACM Symposium on Edge Computing (SEC), pp. 97-98, 2016.
    [28] https://www.alibabacloud.com/tc/knowledge/what-is-edge-computing
    [29] https://medium.com/

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE