| 研究生: |
張曉婷 Chang, Shiao-Ting |
|---|---|
| 論文名稱: |
包埋具酚類分解性的惡臭假單胞菌於多孔性幾丁聚醣顆粒之研究 Entrapment of Pseudomonas putida in chitosan gel beads for biodegradation of phenol |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 酚的生物分解 、固定化 、惡臭假單胞菌 、幾丁聚醣 、甲殼素 |
| 外文關鍵詞: | Pseudomonas putida, Chitin, Phenol Biodegradation, Immobilization, Chitosan |
| 相關次數: | 點閱:123 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以幾丁聚醣作為固定化擔體,利用物理性膠凝作用,針對惡臭假單胞菌進行包埋固定化,作為一代謝酚的生物觸媒,此一固定化擔體有兩項性質是本實驗所關心的議題:
1. 顆粒表層與剖面形態:利用電子顯微鏡觀察不同膠凝條件下形成的顆粒,尋求表層孔洞分布程度高且孔徑小於0.2μm,避免菌體逸漏,達成固定化目的,而顆粒的核心層勿過於緻密,方可提供菌體足夠的生長空間。
2. 顆粒內包埋的活菌數:已固化成型的幾丁聚醣顆粒不易再度溶解,菌體的定量更加困難,採間接探討包埋過程中流失的菌數,與經包埋溶液接觸後的失活情形,來反推顆粒內包埋的活菌量。
利用2%幾丁聚醣溶液在三聚磷酸鈉中所膠凝的顆粒,可耐受曝氣測試與震盪測試,可見幾丁聚醣顆粒強度的穩定性佳。該顆粒表面孔徑為1~6μm,應該會有菌體逸漏的問題。幾丁聚醣分子量愈大與去乙醯程度愈高,都有助於幾丁聚醣滴入膠凝劑時,可以膠凝成顆粒狀。膠凝顆粒隨幾丁聚醣濃度增加,其顆粒核心愈密實,將會對菌體的生長空間有所限制。菌體一經幾丁聚醣溶液接觸後,立即失活,可能是幾丁聚醣的抑菌性與偏酸的幾丁聚醣溶液所致。
In this study, chitosan is used as an immobilization matrix. Pseudomonas putida is entrapped by physical iontropic gelation with chitosan and the resulting beads are used as a biocatalyst for the biodegradation of phenol. Two important issues were investigated about these beads:
1. The surface and cross-section morphology of the beads: the structure of the beads formed by different iontropic gelation procedures were observed by scanning electron microscopy (SEM). To avoid bacteria leakage and attain an effective immobilization, the high surface porosity and small pore diameter that is less than 0.2μm are sought. In addition, the core of the beads shouldn’t be too dense, so as to provide enough growing space for bacteria.
2. The viable bacteria concentration inside the bead: the quantification of bacteria is difficult since the lysis for the chitosan bead was hard. Thus, the following experiments were performed. One is the concentration of the bacterial loss during entrapment. The other is the viable ratio of the bacteria after contact with the solution used for immobilization. Henceforth, the viable bacteria concentration entrapped inside the bead can be calculated.
Chitosan beads formed by using 2% chitosan solution gelation in 1% sodium tripolyphosphate solution is strong enough to bear the aeration and shaking tests. This indicates the stability of the chitosan beads were satisfactory. The surface pore diameter of the beads formed is ranging from 1 to 6 μm. This might result in the leakage of bacteria entrapped. High molecular weight and high degree of deacetylation of the chitosan can lead to a better bead formation in the gelation solution. In addition, the core of the beads will become denser with the increase of the chitosan concentration, and this will limit bacteria growth. Most of all, it was found that the bacteria is denatured after its contact with chitosan solution. This may be attributed to the antibacterial property associated with chitosan as well as the acidic environment of the chitosan solution.
【1】 陸杰人編,環工科學導論,新學識文教出版中心,1988年。
【2】 P. Kumaran and N. Shivaraman, “Biological Treatment of Toxic Industrial Wastes”, in Biotreatment systems, vol.1, D. L. Wise Ed. CRC Press, Boca Raton, FL, p.227~283, 1988.
【3】 Zümriye Aksu, Gültac Bülbül, “Determination of the Effective Diffusion Coefficient of Phenol in Ca-alginate-immobilized P. Putida Beads”, Enzyme and Micorbial Technology, vol.25, p.344~348, 1999.
【4】 Gabriel Bitton, “Fate of Xenobiotics and Toxic Metals in Wastewater Treatment Plants”, chapter 18 in Wastewater Microbiology, Gabriel Bitton Ed., John Wiley & Sons publication, New York, 1999
【5】 Patricia H. Clarke and Nicholas Ornston, “Metabolic Pathways and Regulation:Ⅰ”, chapter 7 in Genetics and Biochemistry of Pseudomonas, edited by P. H. Clarke and M. H. Richmond, John Wiley & Sons publication, Great Britain, p.191~261, 1975.
【6】 Ren Der Yang and Arthur E. Humphery, “Dynamic and Steady Studies of Phenol Biodegradation in Pure and Mixed Cultures”, Biotechnology and Bioengineering, vol.17, p.1211~1235, 1975.
【7】 Zümriye Aksu, Gültac Bülbül, “Investigation of the Combined Effects of External Mass Transfer and Biodegradation Rates on Phenol Removal Using Immobilized P. Putida in a Packed-bed Column Reactor”, Enzyme and Micorbial Technology, vol.22, p.397~403, 1997.
【8】 趙乃昕、王尊哲、蔡文城、馬麥生編著,醫學細菌詞彙及分類鑑定,九州圖書,台北市,1999年。
【9】 Chih-Jen Lu, Chi-Mei Lee and Chiou-Zong Huang, “Biodegradation of Chlorophenols by Immobilized Pure-Culture Microorganisms”, Waer Science and Technology., vol.34, p.67~72, 1996.
【10】 Winfried Hartmeier, “Methods of Immobilization”, chapter 6 in Immobilized Biocatalysts, translated by Joy Wieser, printed in Germany, p.22~50, 1988.
【11】 沈宗禮著,制放技術與微粒包覆,高立出版,p.127~134,1980年。
【12】 Shiow-Ling Lee, Hsin-Yi Cheng, Wen-Chang Chen and Cheng-Chun Chou, “Production of γ-decalactone From Ricinoleic Acid by Immobilized Cells of Sporidipbolus Salmonicolor”, Process Biochemistry, vol.33, p.452~459, 1998.
【13】 M. I. González Siso, E. Lang, B. Carrenõ-Gómez, M. Becerra, F. Otero Espinar and J. Blanco Méndez, “Enzyme Encapsulation on Chitosan Microbeads”, Process Biochemistry, vol. 32, p.211~216, 1997.
【14】 Joel R. Fried, “Network Polymers:Elastomers and Thermosets”, chapter 9 in Polymer Science and Technology, Joel R. Fried Ed., Prentice-Hall International, p.314~336, 1995.
【15】 Amihay Freeman and Yael Dror, “Immobilization of ‘Disguised’ Yeast in Chemically Crosslinked Chitosan Beads”, Biotechnology and Bioengineering, vol.44, p.1083~1088, 1994.
【16】 Wang Jianlong and Qian Yi, “Microbial Degradation of 4-Chlorophenol by Microorganisms Entrapped in Carrageenan-chitosan Gels”, Chemosphere, vol.38, p.3109~3117, 1999.
【17】 Ik-Keum Yoo, Gi Hun Seong, Ho Nam Chang and Joong Kon Park, “Encapsulation of Lactobacillus Casei Cells in Liquid-core Alginate Capsules for Lactic Acid Production”, Enzyme and Microbial Technology, vol.19, p.428~433, 1996.
【18】 Somesh C. Nigam, I-Fu Tsao, Akiyoshi Sakoda and Henry Y. Wang, “Techniques for Preparing Hydrogel Membrane Capsules”, Biotechnology techniques, vol.2, p.271~276, 1988.
【19】 Ichiro Chibata and Lemuel B. Wingaed, “Immobilized Microbial Cells”, volume 4 in Applied Biochemistry and Bioengineering, edited by Lemuel B. Wingaed, Jr., Ephraim Katchalski-Katzir and Leon Goldstein, Academic Press, p190~245, 1983.
【20】 Figen Zihnioğlu, Azmi Telefoncu, “Diffusion Characteristics of Chitosan-entrapped Microsomal UDP-glucuronyl Transferase Gel Beads”, Biochimica et Biophysica Acta, vol.1244, p.291~294, 1995.
【21】 Peter Grunwald, “Determination of Effective Coefficients-an Important Parameter for the Efficiency of Immobilized Biocatlysts”, Biochemical Education, vol.17, p.99~102, 1989.
【22】 蔣挺大編著,甲殼素,中國環境科學出版社,1994年。
【23】 F. A. Putri and John F. Kennedy, “Application of Chitin and Chitosan”, Carbohydrate polymers, vol.34, p.414,1998.
【24】 K. Kurita, “Chemistry and Application of Chitin and Chitosan”, Polymer Degradation and Stability, vol.59, p.117~120,1998.
【25】 Riccardo Mussarelli, Charles Jeuniaux and G. W. Gooday edited, Chitin in nature and technology, Plenum Press, New York, 1986.
【26】 Yoahihide Kawamura, Masaki Mitsuhashi and Hiroaki Tanibe, “Adsorption of Meatl Ions on Polyaminated Highly Porous Chitosan Chelating Resin”, Industrial & Engineering Chemistry Research, vol.32, p.386~391, 1993.
【27】 R. A. A. Muzzarelli, Natural Chelating Polymers:Alginate Acid, Chitin and Chitosan, Pergamon Press, Oxford, 1973.
【28】 糜福龍,幾丁聚醣應用於藥物集疫苗傳輸系統之設計及研究,國立中央大學化學工程研究所博士論文,1997年。
【29】 Z. Aydin, J. Akbuğa, “Chitosan Beads for the Delivery of Salmon Calcitonin:Preparation and Release Characteristics”, International Journal of Pharmaceutics, vol.131, pp.101~103,1996.
【30】 Valentino M. Kaya, Gaston Picard, “Stability of Chitosan Gel as Entrapment Matrix of Viable Scenedesmus bicellularis Cells Immobilized on Screens for Tertiary Treatment of Wastewater”, Bioresource Technology 56, p.147~155, 1996.
【31】 Valentino M. Kaya and Gaston Picard, “The Viability of Scenedesmus bicellularis Cells Immobilized on Alginate Screens Following Nutrient Starvation in Air at 100% Relative Humidity”, Biotechnology and Bioengineering, vol.46, p.456~464,1995.
【32】 Thomas Chandy, Daniel L. Mooradian, and Gundu H. R. Rao, “Evaluation of Modified Alginate-Chitosan-Polyethylene Glycol Microcapsules for Cell Encapsulation”, Artificial Organs, vol.23, p.894~903, 1999.
【33】 K. D. Vorlop and J. Klein, “Entrapment of Microbial Cells in Chitosan”, Methods in Enzymology, vol.135, p.259~269, 1987.
【34】 田蔚城,生物產業與製藥產業,九州圖書文物有限公司,台北市,1998年。
【35】 陳家全、李家維、楊瑞森著,生物電子顯微鏡學,國科會精儀中心,1991年。
【36】 張志純譯,J. D. Mellor撰,冰凍乾燥法,徐氏基金會,1983年。
【37】 Cordon A. Hill and Campbell W. Robinson, “Substrate Inhibition Kinetics : Phenol Degradation by Pseudomonas Putida”, Biotechnology and Bioengineering, vol.17, p.1599~1615, 1975.
【38】 Angela Mordocco, Clem Kuek and Roger Jenkins, “Continuous Degradation of Phenol at Low Concentration Using Immobilized Pseudomonas putida ”, Enzyme and Microbial Technology, vol.25, p.530~536, 1999.
【39】 Denis D. G. Mater, Barbotin Jean-Noël, Nava Saucedo José Edmundo, Truffaut Nicole and Thomas Daniel, “Effect of Gelation Temperature and Gel-dissolving Solution on Cell Viability and Recovery of Two Pseudomonas Putida Strains Co-immobilized Within Calcium Alginate or κ-carrageenan Gel Beads”, Biotechnology Techniques, vol.9, p.745~752, 1995.
【40】 蔡信行,聚合物化學,文京,1998年。
【41】 王進琦,基礎微生物學,藝軒,1986年。
【42】 A. D. Eaton., L. S. Clesceri, A. E. Greenburg., “5530D Direct Photometric Methods” in Standard methods for The Examination of Water and Wastewater, Washington, D.C., American Public Health Association, American Water Works Association and Water Environment Federation, p.5-33, 1992.
【43】 E. J. Emerson, “The Condensation of Aminoantipyrine.Ⅱ. A New Color Test for Phenolic Compounds”, Journal of Organic Chemistry, vol.8, p.417~420, 1943.
【44】 Claire Jarry, Cyril Chaput, Abdellatif Chenite, Marie-Alexandrine Renaud, Micheal Buschmann, Jean-Christophe Leroux, “Effects of Sterilization on Thermogelling Chitosan-based Gels”, Journal of Biomedical Materals Research, vol.58, p.127~135, 2001.